815 resultados para FREE FATTY ACIDS
Resumo:
PURPOSE. Phospholipids are a major component of lens fiber cells and influence the activity of membrane proteins. Previous investigations of fatty acid uptake by the lens are limited. The purpose of the present study was thus to determine whether exogenous fatty acids could be taken up by the rat lens and incorporated into molecular phospholipids. METHODS. Lenses were incubated with fluorescently labeled palmitic acid and then analyzed by confocal microscopy. Concurrently, lenses incubated with either fluorescently labeled palmitic acid or the more physiologically relevant (13)C(18)-oleic acid were sectioned into nuclear and cortical regions and analyzed by highly sensitive and structurally selective electrospray ionization tandem mass spectrometry techniques. RESULTS. The detection of fluorescently labeled palmitic acid, even after 16 hours of incubation, was limited to approximately the outer 25% to 30% of the rat lens. Mass spectrometry also revealed the presence of free (13)C(18)-oleic acid in the cortex but not the nucleus. No evidence could be found for incorporation of fluorescently labeled palmitic acid into phospholipids; however, a low level of (13)C(18)-oleic acid incorporation into phosphatidylethanolamine (PE), specifically PE (PE 16:0/(13)C(18) 18:1) was detected in the lens cortex after 16 hours. CONCLUSIONS. These data demonstrate that uptake of exogenous (e.g., dietary fatty acids) by the lens and their incorporation into phospholipids is minimal, most likely occurring only during de novo synthesis in the outermost region of the lens. This finding adds support to the hypothesis that once synthesized there is no active remodeling or turnover of fiber cell phospholipids.
Resumo:
Soy-derived phytoestrogen genistein and 17β-estradiol (E2), the principal endogenous estrogen in women, are also potent antioxidants protecting LDL and HDL lipoproteins against oxidation. This protection is enhanced by esterification with fatty acids, resulting in lipophilic molecules that accumulate in lipoproteins or fatty tissues. The aims were to investigate, whether genistein becomes esterified with fatty acids in human plasma accumulating in lipoproteins, and to develop a method for their quantitation; to study the antioxidant activity of different natural and synthetic estrogens in LDL and HDL; and to determine the E2 esters in visceral and subcutaneous fat in late pregnancy and in pre- and postmenopause. Human plasma was incubated with [3H]genistein and its esters were analyzed from lipoprotein fractions. Time-resolved fluoroimmunoassay (TR-FIA) was used to quantitate genistein esters in monkey plasma after subcutaneous and oral administration. The E2 esters in women s serum and adipose tissue were also quantitated using TR-FIA. The antioxidant activity of estrogen derivatives (n=43) on LDL and HDL was assessed by monitoring the copper induced formation of conjugated dienes. Human plasma was shown to produce lipoprotein-bound genistein fatty acid esters, providing a possible explanation for the previously reported increased oxidation resistance of LDL particles during intake of soybean phytoestrogens. Genistein esters were introduced into blood by subcutaneous administration. The antioxidant effect of estrogens on lipoproteins is highly structure-dependent. LDL and HDL were protected against oxidation by many unesterified, yet lipophilic derivatives. The strongest antioxidants had an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups. E2 ester levels were high during late pregnancy. The median concentration of E2 esters in pregnancy serum was 0.42 nmol/l (n=13) and in pre- (n=8) and postmenopause (n=6) 0.07 and 0.06 nmol/l, respectively. In pregnancy visceral fat the concentration of E2 esters was 4.24 nmol/l and in pre- and postmenopause 0.82 and 0.74 nmol/l. The results from subcutaneous fat were similar. In serum and fat during pregnancy, E2 esters constituted about 0.5 and 10% of the free E2. In non-pregnant women most of the E2 in fat was esterified (the ester/free ratio 150 - 490%). In postmenopause, E2 levels in fat highly exceeded those in serum, the majority being esterified. The pathways for fatty acid esterification of steroid hormones are found in organisms ranging from invertebrates to vertebrates. The evolutionary preservation and relative abundance of E2 esters, especially in fat tissue, suggest a biological function, most likely in providing a readily available source of E2. The body s own estrogen reservoir could be used as a source of E2 by pharmacologically regulating the E2 esterification or hydrolysis.
Resumo:
Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.
Resumo:
In order to study the effects of different nitrogen source and concentration on the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) was cultured in media with different nitrogen sources and concentrations. During the pre-logarithmic phase, the alga grew faster with ammonium as N source than with nitrate, but the reverse applied during the post-logarithmic phase. The alga grew poorly in N-free medium or medium with urea as the sole N source. In the same growth phase, ammonium medium resulted in higher yield of total lipid, but the EPA yield did not differ significantly different from that using nitrate medium. The maximum growth rate occurred in medium containing 1.28 mmol L-1 sodium nitrate, while maximum EPA and total lipid contents were reached at 1.92 mmol L-1, when EPA accounted for 27.9% total fatty acids. The growth rate kept stable when NH4Cl ranged from 0.64 to 2.56 mmol L-1, and the maximum content of total lipid and EPA occurred in the medium with 2.56 mmol L-1 NH4Cl. The EPA content was higher in the pre- than post-logarithmic phase, though the total lipid content was lower. The highest EPA content expressed as percent total fatty acid was 27.9% in nitrate medium and and 39.0% in ammonium medium.
Resumo:
Our objective in this study was to develop and implement an effective intervention strategy to manipulate the amount and composition of dietary fat and carbohydrate (CHO) in free-living individuals in the RISCK study. The study was a randomized, controlled dietary intervention study that was conducted in 720 participants identified as higher risk for or with metabolic syndrome. All followed a 4-wk run-in reference diet [high saturated fatty acids (SF)/high glycemic index (GI)]. Volunteers were randomized to continue this diet for a further 24 wk or to I of 4 isoenergetic prescriptions [high monounsaturated fatty acids (MUFA)/high GI; high MUFA/low GI; low fat (LF)/high GI; and LF/low GI]. We developed a food exchange model to implement each diet. Dietary records and plasma phospholipid fatty acids were used to assess the effectiveness of the intervention strategy. Reported fat intake from the LF diets was significantly reduced to 28% of energy (%E) compared with 38% E from the HM and LF diets. SF intake was successfully decreased in the HM and LF diets was similar to 10% E compared with 17% E in the reference diet (P = 0.001). Dietary MUFA in the HIM diets was similar to 17% E, significantly higher than in the reference (12% E) and LF diets (10% E) (P = 0.001). Changes in plasma phospholipid fatty acids provided further evidence for the successful manipulation of fat intake. The GI of the HGI and LGI arms differed by similar to 9 points (P = 0.001). The food exchange model provided an effective dietary strategy for the design and implementation across multiple sites of 5 experimental diets with specific targets for the proportion of fat and CHO. J. Nutr. 139: 1534-1540, 2009.
Resumo:
The high ingestion of oleic (OLA) and linoleic (LNA) acids by Western populations, the presence of inflammatory diseases in these populations, and the importance of neutrophils in the inflammatory process led us to investigate the effects of oral ingestion of unesterified OLA and LNA on rat neutrophil function. Pure OLA and LNA were administered by gavage over 10 days. The doses used (0.11, 0.22 and 0.44 g/kg of body weight) were based on the Western consumption of OLA and LNA. Neither fatty acid affected food, calorie or water intake. The fatty acids were not toxic to neutrophils as evaluated by cytometry using propidium iodide (membrane integrity and DNA fragmentation). Neutrophil migration in response to intraperitoneal injection of glycogen and in the air pouch assay, was elevated after administration of either OLA or LNA. This effect was associated with enhancement of rolling and increased release of the chemokine CINC-2 alpha beta. Both fatty acids elevated l-selectin expression, whereas no effect on beta(2)-integrin expression was observed, as evaluated by flow cytometry. LNA increased the production of proinflammatory cytokines (IL-1 beta and CINC-2 alpha beta) by neutrophils after 4 h in culture and both fatty acids decreased the release of the same cytokines after 18 h. In conclusion, OLA and LNA modulate several functions of neutrophils and can influence the inflammatory process.
Resumo:
The present study examines the effect of four semi-purified diets (casein-gelatin based) where the source of fatty acids was free (esterified) oleic acid and linoleic acid (LA) (LOA diet), linseed and olive oil (predominantly LA and linolenic acid) (LO diet), cod liver oil (rich in highly unsaturated fatty acids) (CLO diet), and soybean lecithin (phospholipids; mostly LA) (LE diet) on the growth of juvenile South American catfish (surubim, Pseudoplatystoma fasciatum, Pimelodidae) (0.98 +/- 0.04 g individual weight). Fish were fed at a restricted-readjusted feeding rate for 8 wk. At the end of the experiment, LE-diet-fed fish grew significantly larger than those of the other three groups (P < 0.05). Considerable cannibalism was observed in all the treatments. It is suggested that the quantitative growth performance may possibly change under other conditions, with less or no cannibalism. Survival did not differ significantly among the fish fed four different diets. Muscle and liver lipid contents did not vary among dietary treatments (P > 0.05), but whole-body lipid concentrations were affected by dietary treatments. Fish fed LE diet contained significantly lower lipid level than those fed three other diets (P < 0.05). Muscle and liver fatty acid profiles reflected dietary fatty acid composition. Arachidonic acid level was significantly higher in muscle and liver of fish fed LOA and LE diets than in those fed LO and CLO diets. The results suggest that the efficiency of elongation and desaturation of 18C fatty acids depends on the dietary lipid source, and South American catfish has considerable capacity to transform linoleate to arachidonate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: High plasma uric acid (UA) is a prerequisite for gout and is also associated with the metabolic syndrome and its components and consequently risk factors for cardiovascular diseases. Hence, the management of UA serum concentrations would be essential for the treatment and/or prevention of human diseases and, to that end, it is necessary to know what the main factors that control the uricemia increase. The aim of this study was to evaluate the main factors associated with higher uricemia values analyzing diet, body composition and biochemical markers. Methods. 415 both gender individuals aged 21 to 82 years who participated in a lifestyle modification project were studied. Anthropometric evaluation consisted of weight and height measurements with later BMI estimation. Waist circumference was also measured. The muscle mass (Muscle Mass Index - MMI) and fat percentage were measured by bioimpedance. Dietary intake was estimated by 24-hour recalls with later quantification of the servings on the Brazilian food pyramid and the Healthy Eating Index. Uric acid, glucose, triglycerides (TG), total cholesterol, urea, creatinine, gamma-GT, albumin and calcium and HDL-c were quantified in serum by the dry-chemistry method. LDL-c was estimated by the Friedewald equation and ultrasensitive C-reactive protein (CRP) by the immunochemiluminiscence method. Statistical analysis was performed by the SAS software package, version 9.1. Linear regression (odds ratio) was performed with a 95% confidence interval (CI) in order to observe the odds ratio for presenting UA above the last quartile (♂UA > 6.5 mg/dL and ♀ UA > 5 mg/dL). The level of significance adopted was lower than 5%. Results: Individuals with BMI ≥ 25 kg/m§ssup§2§esup§ OR = 2.28(1.13-4.6) and lower MMI OR = 13.4 (5.21-34.56) showed greater chances of high UA levels even after all adjustments (gender, age, CRP, gamma-gt, LDL, creatinine, urea, albumin, HDL-c, TG, arterial hypertension and glucose). As regards biochemical markers, higher triglycerides OR = 2.76 (1.55-4.90), US-CRP OR = 2.77 (1.07-7.21) and urea OR = 2.53 (1.19-5.41) were associated with greater chances of high UA (adjusted for gender, age, BMI, waist circumference, MMI, glomerular filtration rate, and MS). No association was found between diet and UA. Conclusions: The main factors associated with UA increase were altered BMI (overweight and obesity), muscle hypotrophy (MMI), higher levels of urea, triglycerides, and CRP. No dietary components were found among uricemia predictors. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.
Resumo:
Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.
Resumo:
Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1 (n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.
Resumo:
In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.