899 resultados para FEEDBACK-CONTROL
Resumo:
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.
Resumo:
Dado que el deporte representa un contexto de gran valor para el desarrollo de la madurez individual y social de los adolescentes, lo cual probablemente influirá en su desarrollo, maduración y en su comportamiento, así como en su forma de entender las relaciones sociales. De aquí la influencia que un entrenador pueda tener sobre sus jóvenes jugadores, ya que tiene un papel de gran relevancia, pues puede repercutir de forma significativa en los patrones de comportamiento, en las cogniciones y en los afectos que los mismos vayan a desarrollar (Graham, 2008). Una tarea fundamental del entrenador es proporcionar retroalimentación o feedback a los atletas durante el aprendizaje de las habilidades motoras. El entrenador debe de ser capaz de generar las condiciones del medio en donde se perciba la legitimidad de su retroalimentación al proporcionar el feedback a los atletas, y generar las condiciones en donde se satisfagan las necesidades psicológicas básicas, lo cual propiciará un sentimiento de vitalidad y energía, de acuerdo con la Teoría de la autodeterminación (Deci y Rian, 1985, 2000, 2002 y 2008). En el marco de la Teoría de la autodeterminación (Deci y Rian, 1985, 2000, 2002 y 2008) y la Teoría de de las necesidades psicológicas básicas (Deci y Ryan 1985, 2000), esta tesis doctoral tuvo como objetivo estudiar el modelo representado por los factores sociales (cantidad de feedback correctivo, percepción legítima), los factores personales (necesidades psicológicas básicas: autonomía, competencia y socialización) y el bienestar (vitalidad subjetiva) propuesto en esta misma secuencia, en concordancia con el modelo de Vallerand (1997). Para los fines del presente trabajo se consideró una muestra de 377 estudiantes del nivel medio superior que forman parte de los equipos representativos de fútbol soccer de las preparatorias de la UANL, durante el período comprendido Agosto-Diciembre 2012. El muestreo fue de tipo no probabilístico y por conveniencia. La muestra estuvo compuesta por futbolistas de edades comprendidas entre los 15 y 20 años (M = 16.46, DT = 1.077). El error muestral fue del 4%. En el estudio se utilizaron distintas escalas para medir las variables involucradas en el estudio, como son: la Subescala de la Cantidad del Feedback Correctivo y la Subescala de la Percepción Legítima, a partir de la Escala del Feedback Correctivo; la Escala de Necesidad de Autonomía (NAS), la Escala de Percepción de Competencia del Cuestionario de Motivación Intrínseca (IMI), y la Escala de Necesidad de Relación (NRS); y la Escala de Vitalidad Subjetiva. Entre los resultados más destacados se encontró que existen relaciones positivas y altamente significativas entre todas las variables del estudio; la cantidad de feedback correctivo ofrecido por el entrenador actuó como un predictor positivo de la percepción legítima y, éste a su vez, operó como un predictor positivo de la satisfacción de las necesidades psicológicas básicas; la cantidad de feedback correctivo ofrecido por el entrenador actuó como un predictor positivo de la percepción legítima y, este a su vez, como un predictor positivo de la vitalidad subjetiva; la cantidad de feedback correctivo ofrecido por el entrenador actuó como predictor positivo de la satisfacción de las necesidades psicológicas básicas y, éste a su vez, fue un predictor positivo de la vitalidad subjetiva; la percepción legítima percibida por el jugador actuó como un predictor positivo de la satisfacción de las necesidades psicológicas básicas y, éste a su vez, como predictor positivo de la vitalidad subjetiva. Además, el modelo general nos condujo a que la cantidad de feedback correctivo ofrecido por el entrenador el cual actuó como predictor positivo de la percepción legítima y, este a su vez, predijo la satisfacción de las necesidades psicológicas básicas, la cual a su vez, 15 predijo la vitalidad subjetiva de los jugadores. Los resultados mostraron la puesta a prueba de los diferentes modelos generados a través de la combinación de las distintas variables, las cuales están en línea con la secuencia teórica. Se confirmaron adecuados índices de ajuste en cada uno de los modelos hipotetizado. El análisis de la mediación de las necesidades psicológicas básicas se realizó siguiendo a Holmbeck (1997). Los resultados mostraron que la satisfacción de las necesidades psicológicas básicas es un mediador total entre la cantidad de feedback correctivo y la vitalidad subjetiva. Por otro lado, se encontró que las necesidades psicológicas básicas no fueron un mediador entre la percepción legítima y la vitalidad subjetiva. En conclusión, se tiene que el entrenador es quien genera las condiciones del contexto ya sean de promoción de la autonomía o de control, además, de él depende generar las condiciones que promuevan la percepción de legitimidad en los atletas, mismas que probablemente concebirán en los deportistas la satisfacción de las necesidades psicológicas básicas, que permitan percibir una sensación de bienestar o malestar en los atletas.
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
The aim of this paper is to present new results on H-infinity control synthesis for time-delay linear systems. We extend the use of a finite order LTI system, called comparison system to H-infinity analysis and design. Differently from what can be viewed as a common feature of other control design methods available in the literature to date, the one presented here treats time-delay systems control design with classical numeric routines based on Riccati equations arisen from H-infinity theory. The proposed algorithm is simple, efficient and easy to implement. Some examples illustrating state and output feedback design are solved and discussed in order to put in evidence the most relevant characteristic of the theoretical results. Moreover, a practical application involving a 3-DOF networked control system is presented.
Resumo:
Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.
Resumo:
A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.
Resumo:
This paper presents LABNET, an internet-based remote laboratory for control engineering education developed at UEM-University. At present, the remote laboratory integrates three basic physical systems (level control, temperature control and ship stabilizing system). In this paper, the LABNET architecture is presented and discussed in detail. Issues concerned with concurrent user access, local or remote feedback, automatic report generating and reusing of experiment’s templates have been addressed. Furthermore, the experiences gained developing, testing and using the system will be also presented and their consequences for future design.
Resumo:
The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.