944 resultados para FAST CYCLIC VOLTAMMETRY
Resumo:
A novel polymer electrolyte membrane electrochemical reactor (PEMER) configuration has been employed for the direct electrooxidation of propargyl alcohol (PGA), a model primary alcohol, towards its carboxylic acid derivatives in alkaline medium. The PEMER configuration comprised of an anode and cathode based on nanoparticulate Ni and Pt electrocatalysts, respectively, supported on carbonaceous substrates. The electrooxidation of PGA was performed in 1.0 M NaOH, where a cathode based on a gas diffusion electrode was manufactured for the reduction of oxygen in alkaline conditions. The performance of a novel alkaline anion-exchange membrane based on Chitosan (CS) and Poly(vinyl) alcohol (PVA) in a 50:50 composition ratio doped with a 5 wt.% of poly (4-vinylpyridine) organic ionomer cross-linked, methyl chloride quaternary salt resin (4VP) was assessed as solid polymer electrolyte. The influence of 4VP anionic ionomer loading of 7, 12 and 20 wt.% incorporated into the electrocatalytic layers was examined by SEM and cyclic voltammetry (CV) upon the optimisation of the electroactive area, the mechanical stability and cohesion of the catalytic ink onto the carbonaceous substrate for both electrodes. The performance of the 4VP/CS:PVA membrane was compared with the commercial alkaline anion-exchange membrane FAA −a membrane generally used in direct alcohol alkaline fuel cells- in terms of polarisation plots in alkaline conditions. Furthermore, preparative electrolyses of the electrooxidation of PGA was performed under alkaline conditions of 1 M NaOH at constant current density of 20 mA cm−2 using a PEMER configuration to provide proof of the principle of the feasibility of the electrooxidation of other alcohols in alkaline media. PGA conversion to Z isomers of 3-(2-propynoxy)-2-propenoic acid (Z-PPA) was circa 0.77, with average current efficiency of 0.32. Alkaline stability of the membranes within the PEMER configuration was finally evaluated after the electrooxidation of PGA.
Resumo:
Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.
Resumo:
The synthesis of the hexadentate ligand 5,6-dimethyl-2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (1,2-Me(2)EtN(4)S(2)amp) is reported. The diastereiosomers were separated as cobalt(III) complexes using cation exchange chromatography. The rac and mesa isomers were characterized by NMR (C-13, H-1, Co-59), ESI-MS, UV-Vis spectroscopy and cyclic voltammetry. Single crystals of [Co(rac-1,2-Me(2)EtN(4)S(2)amp)] Cl-2(ClO4) (.) 2H(2)O were characterized by X-ray diffraction. The low-temperature (11 K) absorption spectra of the complexes have been measured in Nafion films and from the observed positions of both spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(2g) bands, octahedral ligand-field parameters (10Dq, B and C) were determined. These results, in conjunction with the Co-59 NMR data, are used to further explore the relationship between the Co-59 magnetogyric ratio (gamma(Co)) and the product of the nephelauxetic ratio and the wavelength of the (1)A(1g) --> T-1(1g) transition (beta(DeltaE)(-1)) for complexes of mixed donor nitrogen-thioether ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The 2-pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) family of ligands are typically tridentate N,N,O chelators that exhibit very high in vitro activity in mobilizing intracellular Fe and are promising candidates for the treatment of Fe overload diseases. Complexation of ferrous perchlorate with HPCIH in MeCN solution gives the expected six-coordinate complex Fe-II(PCIH)(2). However, complexation of Fe-II with 2-pyridinecarbaldehyde picolinoyl hydrazone (HPCPH, an isomer of HPCIH) under the same conditions leads to spontaneous assembly of an unprecedented asymmetric, mixed-ligand dinuclear triple helical complex Fe-2(II)(PCPH)(2)(PPH), where PPH2- is the dianion of bis(picolinoyl) hydrazine. The X-ray crystal structure of this complex shows that each ligand binds simultaneously to both metal centres in a bidentate fashion. The dinuclear complex exhibits two well separated and totally reversible Fe-III/II redox couples as shown by cyclic voltammetry in MeCN solution.
Resumo:
Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (Fe-III-Fe-II --> Fe-III-Fe-III) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Uf(o)) have been determined. The effect of pH on the redox potentials has been investigated in the range 3 < pH < 6.5, enabling acid dissociation constants for Uf(o) and its phosphate and arsenate complexes to be calculated.
Resumo:
Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work, nanoporous nickel oxide was synthesized using anionic surfactant assembly method. Structure characterizations show that this nickel oxide possesses partly-ordered mesoporous structure with nanocrystalline pore wall. The formation mechanism of wormlike nanoporous structure is ascribed to the quasi-reverse micelle system formed by ternary phases of SDS (sodium dodecyl sulfate)/urea/water. Cyclic voltammetry shows that these nickel oxide samples possess both good capacitive behavior due to its unique nanoporous structure and very high specific capacitance due to its high surface area with electrochemical activity.
Resumo:
Ordered mesoporous carbon CMK-5 was comprehensively tested for the first time as electrode materials in lithium ion battery. The surface morphology, pore structure and crystal structure were investigated by Scanning Electronic Microscopy (SEM), N-2 adsorption technique and X-ray diffraction (XRD) respectively. Electrochemical properties of CMK-5 were studied by galvanostatic cycling and cyclic voltammetry, and compared with conventional anode material graphite. Results showed that the reversible capacity of CMK-5 was 525 mAh/g at the third charge-discharge cycle and that CMK-5 was more compatible for quick charge-discharge cycling because of its special mesoporous structure. Of special interest was that the CMK-5 gave no peak on its positive sweep of the cyclic voltammetry, which was different from all the other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also applied to investigate the charge-discharge characteristics of CMK-5.
Resumo:
Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.
Resumo:
Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.
Resumo:
Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.
Resumo:
The Co-III complexes of the hexadentate tripodal ligands HOsen (3-(2'-aminoethylamino)-2,2-bis((2 ''-aminoethylamino) methyl) propan-1-ol) and HOten (3-(2'-aminoethylthia)-2,2-bis((2 ''-aminoethylthia) methyl) propan-1-ol) have been synthesized and fully characterized. The crystal structures of [Co(HOsen)]Cl-3 center dot H2O and [Co(HOten)](ClO4)Cl-2 are reported and in both cases the ligands coordinate as tripodal hexadentate N-6 and N3S3 donors, respectively. Cyclic voltammetry of the N3S3 coordinated complex [Co(HOten)](3+) is complicated and electrode dependent. On a Pt working electrode an irreversible Co-III/II couple ( formal potential - 157 mV versus Ag-AgCl) is seen, which is indicative of dissociation of the divalent complex formed at the electrode. The free HOten released by the dissociation of [Co(HOten)](2+) can be recaptured by Hg as shown by cyclic voltammetry experiments on a static Hg drop electrode ( or in the presence of Hg2+ ions), which leads to the formation of an electroactive Hg-II complex of the N3S3 ligand (formal potential + 60 mV versus Ag-AgCl). This behaviour is in contrast to the facile and totally reversible voltammetry of the hexaamine complex [Co(HOsen)](3+) ( formal potential (Co-III/II) - 519 mV versus Ag-AgCl), which is uncomplicated by any coupled chemical reactions. Akinetic and thermodynamic analysis of the [Co(HOten)](2+)/[Hg(HOten)](2+) system is presented on the basis of digital simulation of the experimental voltammetric data.
Resumo:
The self-assembly of cobalt coordination frameworks (Co-CPs) with a two-dimensional morphology is demonstrated by a solvothermal method. The morphology of the Co-CPs has been controlled by various solvothermal conditions. The two-dimensional nanostructures agglomerated by Co3O4 nanoparticles remained after the pyrolysis of the Co-CPs. The as-synthesized Co3O4 anode material is characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements. The morphology of Co3O4 plays a crucial role in the high performance anode materials for lithium batteries. The Co3O4 nanoparticles with opened-book morphology deliver a high capacity of 597 mA h g-1 after 50 cycles at a current rate of 800 mA g-1. The opened-book morphology of Co3O4 provides efficient lithium ion diffusion tunnels and increases the electrolyte/Co3O4 contact/interfacial area. At a relatively high current rate of 1200 mA g-1, Co3O4 with opened-book morphology delivers an excellent rate capability of 574 mA h g-1.