959 resultados para Experimental animal models
Resumo:
BACKGROUND AND PURPOSE: Statins display anti-inflammatory and anti-epileptogenic properties in animal models, and may reduce the epilepsy risk in elderly humans; however, a possible modulating role on outcome in patients with status epilepticus (SE) has not been assessed. METHODS: This cohort study was based on a prospective registry including all consecutive adults with incident SE treated in our center between April 2006 and September 2012. SE outcome was categorized at hospital discharge into 'return to baseline', 'new disability' and 'mortality'. The role of potential predictors, including statins treatment on admission, was evaluated using a multinomial logistic regression model. RESULTS: Amongst 427 patients identified, information on statins was available in 413 (97%). Mean age was 60.9 (±17.8) years; 201 (49%) were women; 211 (51%) had a potentially fatal SE etiology; and 191 (46%) experienced generalized-convulsive or non-convulsive SE in coma. Statins (simvastatin, atorvastatin or pravastatin) were prescribed prior to admission in 76 (18%) subjects, mostly elderly. Whilst 208 (50.4%) patients returned to baseline, 58 (14%) died. After adjustment for established SE outcome predictors (age, etiology, SE severity score), statins correlated significantly with lower mortality (relative risk ratio 0.38, P = 0.046). CONCLUSION: This study suggests for the first time that exposure to statins before an SE episode is related to its outcome, involving a possible anti-epileptogenic role. Other studies are needed to confirm this intriguing finding.
Resumo:
Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight.
Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion.
Resumo:
The elucidation of the mechanisms directing β-cell mass regeneration and maintenance is of interest, because the deficit of β-cell mass contributes to diabetes onset and progression. We previously found that the level of the microRNA (miRNA) miR-338-3p is decreased in pancreatic islets from rodent models displaying insulin resistance and compensatory β-cell mass expansion, including pregnant rats, diet-induced obese mice, and db/db mice. Transfection of rat islet cells with oligonucleotides that specifically block miR-338-3p activity increased the fraction of proliferating β-cells in vitro and promoted survival under proapoptotic conditions without affecting the capacity of β-cells to release insulin in response to glucose. Here, we evaluated the role of miR-338-3p in vivo by injecting mice with an adeno-associated viral vector permitting specific sequestration of this miRNA in β-cells. We found that the adeno-associated viral construct increased the fraction of proliferating β-cells confirming the data obtained in vitro. miR-338-3p is generated from an intron of the gene coding for apoptosis-associated tyrosine kinase (AATK). Similarly to miR-338-3p, we found that AATK is down-regulated in rat and human islets and INS832/13 β-cells in the presence of the cAMP-raising agents exendin-4, estradiol, and a G-protein-coupled Receptor 30 agonist. Moreover, AATK expression is reduced in islets of insulin resistant animal models and selective silencing of AATK in INS832/13 cells by RNA interference promoted β-cell proliferation. The results point to a coordinated reduction of miR-338-3p and AATK under insulin resistance conditions and provide evidence for a cooperative action of the miRNA and its hosting gene in compensatory β-cell mass expansion.
Resumo:
Severe combined immunodeficiency (SCID) and other severe non-SCID primary immunodeficiencies (non-SCID PID) can be treated by allogeneic hematopoietic stem cell (HSC) transplantation, but when histocompatibility leukocyte antigen-matched donors are lacking, this can be a high-risk procedure. Correcting the patient's own HSCs with gene therapy offers an attractive alternative. Gene therapies currently being used in clinical settings insert a functional copy of the entire gene by means of a viral vector. With this treatment, severe complications may result due to integration within oncogenes. A promising alternative is the use of endonucleases such as ZFNs, TALENs, and CRISPR/Cas9 to introduce a double-stranded break in the DNA and thus induce homology-directed repair. With these genome-editing tools a correct copy can be inserted in a precisely targeted "safe harbor." They can also be used to correct pathogenic mutations in situ and to develop cellular or animal models needed to study the pathogenic effects of specific genetic defects found in immunodeficient patients. This review discusses the advantages and disadvantages of these endonucleases in gene correction and modeling with an emphasis on CRISPR/Cas9, which offers the most promise due to its efficacy and versatility.
Resumo:
Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokinetic-pharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.
Resumo:
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Resumo:
Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1-2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions.
Resumo:
BACKGROUND: Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity. METHODS: Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group). RESULTS: Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells. CONCLUSIONS: A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.
Resumo:
BACKGROUND: Hyperthermia is a frequent complication in patients with acute ischemic stroke. On the other hand, therapeutically induced hypothermia has shown promising potential in animal models of focal cerebral ischemia. This Guideline Document presents the European Stroke Organisation guidelines for the management of temperature in patients with acute ischemic stroke. METHODS: A multidisciplinary group identified related questions and developed its recommendations based on evidence from randomized controlled trials elaborating the Grading of Recommendations Assessment, Development, and Evaluation approach. This Guideline Document was reviewed within the European Stroke Organisation and externally and was approved by the European Stroke Organisation Guidelines Committee and the European Stroke Organisation Executive Committee. RESULTS: We found low-quality evidence, and therefore, we cannot make any recommendation for treating hyperthermia as a means to improve functional outcome and/or survival in patients with acute ischemic stroke and hyperthermia; moderate evidence to suggest against routine prevention of hyperthermia with antipyretics as a means to improve functional outcome and/or survival in patients with acute ischemic stroke and normothermia; very low-quality evidence to suggest against routine induction of hypothermia as a means to improve functional outcome and/or survival in patients with acute ischemic stroke. CONCLUSIONS: The currently available data about the management of temperature in patients with acute ischemic stroke are limited, and the strengths of the recommendations are therefore weak. We call for new randomized controlled trials as well as recruitment of eligible patients to ongoing randomized controlled trials to allow for better-informed recommendations in the future.
Resumo:
The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration
Resumo:
Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients.
Resumo:
BACKGROUND: Theory of mind (ToM), the capacity to infer the intention, beliefs and emotional states of others, is frequently impaired in behavioural variant fronto-temporal dementia patients (bv-FTDp); however, its impact on caregiver burden is unexplored. SETTING: National Institute of Neurological Disorders and Stroke, National Institutes of Health. SUBJECTS: bv-FTDp (n = 28), a subgroup of their caregivers (n = 20) and healthy controls (n = 32). METHODS: we applied a faux-pas (FP) task as a ToM measure in bv-FTDp and healthy controls and the Zarit Burden Interview as a measure of burden in patients' caregivers. Patients underwent structural MRI; we used voxel-based morphometry to examine relationships between regional atrophy and ToM impairment and caregiver burden. RESULTS: FP task performance was impaired in bv-FTDp and negatively associated with caregiver burden. Atrophy was found in areas involved in ToM. Caregiver burden increased with greater atrophy in left lateral premotor cortex, a region associated in animal models with the presence of mirror neurons, possibly involved in empathy. CONCLUSION: ToM impairment in bv-FTDp is associated with increased caregiver burden.
Resumo:
Les ß2-agonistes sont des bronchodilatateurs qui sont prescrits pour traiter l'asthme et l'asthme induite par l'exercice (AIE). Il est relevant de comprendre s'il y a une utilisation adéquate de ces médicaments pour traiter l'AIE chez les athlètes de haut niveau, ou s'ils sont utilisés pour leur potentiel effet ergogénique sur la performance physique. Ce travail examine les actions centrales et périphériques sur la fonction contractile du muscle squelettique humain in vivo induits par l'ingestion d'une dose thérapeutique de ß2- agonistes. Le premier but était d'évaluer si les ß2-agonistes exerçaient une potentialisation de la contractilité du muscle humain et/ou un effet "anti¬fatigue" comme observé dans le modèle animal. Les résultats n'ont fournit aucune évidence d'une potentialisation sur le muscle squelettique humain in vivo non-fatigué et fatigué induit par l'administration orale de ß2-agonistes. Tout effet excitateur exercé par ce traitement sur le système nerveux central a été aussi exclu. Le deuxième but était de déterminer si les ß2-agonistes affaiblissaient la contractilité du muscle squelettique humain à contraction lente, et d'évaluer si ce changement pouvait interférer avec le contrôle moteur au muscle. Les résultats ont montré que les ß2-agonistes affaiblissent la contractilité des fibres lentes, comme conséquence de l'effet lusitrope positif se produisant dans ces fibres. La capacité de développer une force maximale n'est pas réduite par le traitement, même si une augmentation de la commande centrale au muscle est requise pour produire la même force lors de contractions sous-maximales. Le but final était d'examiner si une adaptation du contrôle moteur était re¬quis pour compenser l'affaiblissement des fibres lentes exercée par les ß2- agonistes pendant un exercice volontaire, et de déterminer si cette adaptation centrale pouvait accroître la fatigue musculaire. Malgré le fait que les résultats confirment l'effet affaiblissant induit par les ß2-agonistes, ce changement contractile n'influence pas le contrôle moteur au muscle pendant les contractions sous-maximales de l'exercice fatiguant, et n'accroît pas le degré de fatigue. Ce travail éclaircit les actions spécifiques des ß2-agonistes sur la fonction contractile du muscle squelettique humain in vivo et leurs influence sur le contrôle moteur. Les mécanismes sous-jacents de l'action ergogénique sur la performance physique produit par les ß2-agonistes sont aussi élucidés. -- ß2-Agonists are bronchodilators that are widely prescribed for the treatment of asthma and exercise-induced asthma (EIA). The extensive use of ß2-agonists by competitive athletes has raised the question as to whether there is a valid need for this class of drugs because of EIA or a misuse because of their potential ergogenic effect on exercise performance. This work investigated the central and peripheral actions that were elicited by the ingestion of a therapeutic dose of ß2-agonists on the contractility of human skeletal muscle in vivo. The first objective was to investigate whether ß2-agonists would potentiate muscle contractility and/or exert the "anti-fatigue" effect observed in animal models. The findings did not provide any evidence for the ß2-agonist-induced potentiation of in vivo human non-fatigued and fatigued skeletal muscle. Moreover, the findings exclude any excitatory action of this treatment on the central nervous system. The second objective was to explore whether the weakening action on the contractile function would occur after ß2-agonist intake in human slow-twitch skeletal muscle and to ascertain whether this contractile change may interfere with muscle motor control. The results showed that ß2-agonists weaken the contractility of slow-twitch muscle fibres as a result of the lusitropic effect occurring in these fibres. The maximal force-generating capacity of the skeletal muscle is not reduced by ß2-agonists, even though an augmented neural drive to muscle is required to develop the same force during submaximal contractions. The final objective was to examine whether a motor control adjustment is needed to compensate for the ß2-agonist-induced weakening effect on slow- twitch fibres during a voluntary exercise and to also assess whether this central adaptation could exaggerate muscle fatigue. Despite the findings confirming the occurrence of the weakening action that is exerted by ß2- agonists, this contractile change did not interfere with muscle motor control during the submaximal contractions of the fatiguing exercise and did not augment the degree of the muscle fatigue. This work contributes to a better understanding of the specific actions of ß2-agonists on the contractile function of in vivo human skeletal muscles and their influence on motor control. In addition, the findings elucidate mechanisms that could underlie the ergogenic effect that is exerted by ß2- agonists on physical performance.
Resumo:
Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside-induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease.
Resumo:
Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.