972 resultados para Experimental Tests


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the interaction of sea ice with offshore structures is of primary importance for the development of technology in cold climate regions. The rheological properties of sea ice (strength, creep, viscosity) as well as the roughness of the contact surface are the main factors influencing the type of interaction with a structure. A device was developed and designed and small scale laboratory experiments were carried out to study sea ice frictional interaction with steel material by means of a uniaxial compression rig. Sea-ice was artificially grown between a stainless steel piston (of circular cross section) and a hollow cylinder of the same material, coaxial to the former and of the same surface roughness. Three different values for the roughness were tested: 1.2, 10 and 30 μm Ry (maximum asperities height), chosen as representative values for typical surface conditions, from smooth to normally corroded steel. Creep tests (0.2, 0.3, 0.4 and 0.6 kN) were conducted at T = -10 ºC. By pushing the piston head towards the cylinder base, three different types of relative movement were observed: 1) the piston slid through the ice, 2) the piston slid through the ice and the ice slid on the surface of the outer cylinder, 3) the ice slid only on the cylinder surface. A cyclic stick-slip motion of the piston was detected with a representative frequency of 0.1 Hz. The ratio of the mean rate of axial displacement to the frequency of the stick-slip oscillations was found to be comparable to the roughness length (Sm). The roughness is the most influential parameter affecting the amplitude of the oscillations, while the load has a relevant influence on the their frequency. Guidelines for further investigations were recommended. Marco Nanetti - seloselo@virgilio.it

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis provides an experimental analysis of the effectiveness of oriented DBD plasma actuators over a NACA 0015 airfoil at low Reynolds numbers. Tests were performed in partnership with the Department of Electrical Engineering of Bologna University, in the wind tunnel of the Applied Aerodynamics Laboratory of Aerospace Engineering faculty. Lift coefficient measurements were carried out in order to verify how an oriented plasma jet succeeds in prevent boundary layer separation. Both actuators’ chord wise position and plasma jet orientation angle have been investigated to examine which configurations lead to the best results. A particular attention has been paid also to the analysis of results in steady and unsteady plasma actuation. Questa tesi offre un’analisi sperimentale sull’efficacia di attuatori al plasma orientabili, basati su una tecnologia DBD, installati su un profilo alare NACA 0015, a bassi numeri di Reynolds. Le prove sono state condotte in collaborazione con il Dipartimento di Ingegneria Elettrica dell’Università di Bologna, nella galleria del vento del Laboratorio di Aerodinamica Applicata della Facoltà di Ingegneria Aerospaziale di Forlì. Per verificare come un getto orientabile di plasma riesca a prevenire la separazione dello strato limite, sono state eseguite misure sul coefficiente di portanza. Sono state indagate sia la posizione degli attuatori lungo la corda che l’angolo con cui è orientato il getto di plasma, per vedere quali configurazioni conducono ai migliori risultati. Una particolare attenzione è stata riservata all’analisi dei risultati ottenuti con plasma continuo e pulsato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past twenty years, new technologies have required an increasing use of mathematical models in order to understand better the structural behavior: finite element method is the one mostly used. However, the reliability of this method applied to different situations has to be tried each time. Since it is not possible to completely model the reality, different hypothesis must be done: these are the main problems of FE modeling. The following work deals with this problem and tries to figure out a way to identify some of the unknown main parameters of a structure. This main research focuses on a particular path of study and development, but the same concepts can be applied to other objects of research. The main purpose of this work is the identification of unknown boundary conditions of a bridge pier using the data acquired experimentally with field tests and a FEM modal updating process. This work doesn’t want to be new, neither innovative. A lot of work has been done during the past years on this main problem and many solutions have been shown and published. This thesis just want to rework some of the main aspects of the structural optimization process, using a real structure as fitting model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We found that pulse pressure variation (PPV) did not predict volume responsiveness in patients with increased pulmonary artery pressure. This study tests the hypothesis that PPV does not predict fluid responsiveness during an endotoxin-induced acute increase in pulmonary artery pressure and right ventricular loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This experiment was performed to evaluate clinically and histologically the effect of mechanical therapy with or without antiseptic therapy on peri-implant mucositis lesions in nine cynomolgus monkeys. MATERIAL AND METHODS: Two ITI titanium implants were inserted into each side of the mandibles. After 90 days of plaque control and soft tissue healing, a baseline clinical examination was completed. Peri-implant lesions were induced by placing silk ligatures and allowing plaque to accumulate for 6 weeks. The clinical examination was then repeated, and the monkeys were randomly assigned to three treatment groups: group A, mechanical cleansing only; group B, mechanical cleansing and local irrigation with 0.12% chlorhexidine (CHX) and application of 0.2% CHX gel; and group C, control, no treatment. The implants in treatment groups A and B were treated and maintained according to the assigned treatment for two additional months. At the end of the maintenance period, a final clinical examination was performed and the animals were sacrificed for biopsies. RESULTS: The mean probing depths (PD) values at mucositis were: 3.5, 3.7, and 3.4 mm, and clinical attachment level (CAL) = 3.8, 4.1, and 3.9 mm for treatment groups A, B and C, respectively. The corresponding values after treatment were: PD = 1.7, 2.1, and 2.5 mm, and CAL=2.6, 2.6, and 3.1 mm. ANOVA of mean changes (Delta) in PD and CAL after treatment showed no statistical difference between the treatment groups. Comparison of the mean changes in PD and CAL after treatment yielded statistical differences between the control and treatment groups P < 0.01. According to the t-test, no statistical difference was found between treatment groups A and B for the PD reduction but there was a significant difference for the CAL change, P < 0.03. Group A had significantly more recession and less CAL gain than group B. Non-parametric tests yielded no significant differences in modified plaque index (mPlI) and gingival index (GI) after treatment between both treatment groups. Frequencies and percent distributions of the mPlI and GI scores changed considerably for both treatment groups when compared with the changes in the control group after treatment. With regard to the histological evaluation, no statistical differences existed between the treatments for any linear measurement. The proportion of inflammation found in the mucosal tissues of the control implants was greater than the one found for both treatment groups, P < 0.01. More importantly, both treatment groups showed a similar low proportion of inflammation after 2 months of treatment. CONCLUSIONS: Within the limitations of this experiment, and considering the supportive plaque control rendered, it can be concluded that for pockets of 3-4 mm: (1) mechanical therapy alone or combined with CHX results in the clinical resolution of peri-implant mucositis lesions, (2) histologically, both treatments result in minimal inflammation compatible with health, and (3) the mechanical effect alone is sufficient to achieve clinical and histologic resolution of mucositis lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to define the characteristics of the antibacterial activity of beta-lactam antibiotics in the treatment of bacterial meningitis, the relationship between cerebrospinal fluid (CSF) drug concentrations and the rate of bacterial killing was investigated for penicillin G and four new cephalosporins in an animal model of meningitis due to Streptococcus pneumoniae. All five drugs showed a significant correlation between increasing drug concentrations in CSF and increasing bactericidal rates. Minimal activity was observed in CSF at drug concentrations of approximately the broth minimal bactericidal concentration (MBC). Maximal activity occurred with CSF concentrations 10-30 times higher. In vitro tests did not reproduce the unique correlation of increasing drug concentrations and killing activity found in vivo. When evaluating new beta-lactam antibiotics for the treatment of bacterial meningitis, it is reasonable to establish a minimum standard of CSF drug concentrations of greater than or equal to 30 times the MBC against the infecting organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical testing of the periodontal ligament requires a practical experimental model. Bovine teeth are advantageous in terms of size and availability, but information is lacking as to the anatomy and histology of their periodontium. The aim of this study, therefore, was to characterize the anatomy and histology of the attachment apparatus in fully erupted bovine mandibular first molars. A total of 13 teeth were processed for the production of undecalcified ground sections and decalcified semi-thin sections, for NaOH maceration, and for polarized light microscopy. Histomorphometric measurements relevant to the mechanical behavior of the periodontal ligament included width, number, size and area fraction of blood vessels and fractal analysis of the two hard-soft tissue interfaces. The histological and histomorphometric analyses were performed at four different root depths and at six circumferential locations around the distal and mesial roots. The variety of techniques applied provided a comprehensive view of the tissue architecture of the bovine periodontal ligament. Marked regional variations were observed in width, surface geometry of the two bordering hard tissues (cementum and alveolar bone), structural organization of the principal periodontal ligament connective tissue fibers, size, number and numerical density of blood vessels in the periodontal ligament. No predictable pattern was observed, except for a statistically significant increase in the area fraction of blood vessels from apical to coronal. The periodontal ligament width was up to three times wider in bovine teeth than in human teeth. The fractal analyses were in agreement with the histological observations showing frequent signs of remodeling activity in the alveolar bone - a finding which may be related to the magnitude and direction of occlusal forces in ruminants. Although samples from the apical root portion are not suitable for biomechanical testing, all other levels in the buccal and lingual aspects of the mesial and distal roots may be considered. The bucco-mesial aspect of the distal root appears to be the most suitable location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to develop a working physical model of the focused plenoptic camera and develop software that can process the measured image intensity, reconstruct this into a full resolution image, and to develop a depth map from its corresponding rendered image. The plenoptic camera is a specialized imaging system designed to acquire spatial, angular, and depth information in a single intensity measurement. This camera can also computationally refocus an image by adjusting the patch size used to reconstruct the image. The published methods have been vague and conflicting, so the motivation behind this research is to decipher the work that has been done in order to develop a working proof-of-concept model. This thesis outlines the theory behind the plenoptic camera operation and shows how the measured intensity from the image sensor can be turned into a full resolution rendered image with its corresponding depth map. The depth map can be created by a cross-correlation of adjacent sub-images created by the microlenslet array (MLA.) The full resolution image reconstruction can be done by taking a patch from each MLA sub-image and piecing them together like a puzzle. The patch size determines what object plane will be in-focus. This thesis also goes through a very rigorous explanation of the design constraints involved with building a plenoptic camera. Plenoptic camera data from Adobe © was used to help with the development of the algorithms written to create a rendered image and its depth map. Finally, using the algorithms developed from these tests and the knowledge for developing the plenoptic camera, a working experimental system was built, which successfully generated a rendered image and its corresponding depth map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrations, Posture, and the Stabilization of Gaze: An Experimental Study on Impedance Control R. KREDEL, A. GRIMM & E.-J. HOSSNER University of Bern, Switzerland Introduction Franklin and Wolpert (2011) identify impedance control, i.e., the competence to resist changes in position, velocity or acceleration caused by environmental disturbances, as one of five computational mechanisms which allow for skilled and fluent sen-sorimotor behavior. Accordingly, impedance control is of particular interest in situa-tions in which the motor task exhibits unpredictable components as it is the case in downhill biking or downhill skiing. In an experimental study, the question is asked whether impedance control, beyond its benefits for motor control, also helps to stabi-lize gaze what, in turn, may be essential for maintaining other control mechanisms (e.g., the internal modeling of future states) in an optimal range. Method In a 3x2x4 within-subject ANOVA design, 72 participants conducted three tests on visual acuity and contrast (Landolt / Grating and Vernier) in two different postures (standing vs. squat) on a platform vibrating at four different frequencies (ZEPTOR; 0 Hz, 4 Hz, 8 Hz, 12 Hz; no random noise; constant amplitude) in a counterbalanced or-der with 1-minute breaks in-between. In addition, perceived exertion (Borg) was rated by participants after each condition. Results For Landolt and Grating, significant main effects for posture and frequency are re-vealed, representing lower acuity/contrast thresholds for standing and for higher fre-quencies in general, as well as a significant interaction (p < .05), standing for in-creasing posture differences with increasing frequencies. Overall, performance could be maintained at the 0 Hz/standing level up to a frequency of 8 Hz, if bending of the knees was allowed. The fact that this result is not only due to exertion is proved by the Borg ratings showing significant main effects only, i.e., higher exertion scores for standing and for higher frequencies, but no significant interaction (p > .40). The same pattern, although not significant, is revealed for the Vernier test. Discussion Apparently, postures improving impedance control not only turn out to help to resist disturbances but also assist in stabilizing gaze in spite of these perturbations. Con-sequently, studying the interaction of these control mechanisms in complex unpre-dictable environments seems to be a fruitful field of research for the future. References Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72, 425-442.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metacognitve ability to accurately estimate ones performance in a test, is assumed to be of central importance for initializing task-oriented effort. In addition activating adequate problem-solving strategies, and engaging in efficient error detection and correction. Although school children's' ability to estimate their own performance has been widely investigated, this was mostly done under highly-controlled, experimental set-ups including only one single test occasion. Method: The aim of this study was to investigate this metacognitive ability in the context of real achievement tests in mathematics. Developed and applied by a teacher of a 5th grade class over the course of a school year these tests allowed the exploration of the variability of performance estimation accuracy as a function of test difficulty. Results: Mean performance estimations were generally close to actual performance with somewhat less variability compared to test performance. When grouping the children into three achievement levels, results revealed higher accuracy of performance estimations in the high achievers compared to the low and average achievers. In order to explore the generalization of these findings, analyses were also conducted for the same children's tests in their science classes revealing a very similar pattern of results compared to the domain of mathematics. Discussion and Conclusion: By and large, the present study, in a natural environment, confirmed previous laboratory findings but also offered additional insights into the generalisation and the test dependency of students' performances estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.