996 resultados para Exchange spectroscopy
Resumo:
In0.2Ga0.8N layers were directly grown on Si(111) substrate by plasma-assisted molecular beam epitaxy (PAMBE). Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using the standard Vegard's law. High-resolution X-ray photoemission spectroscopy measurements were used to determine the band offset of wurtzite-In0.2Ga0.8N/Si(111) heterojunctions. The valence band of InGaN is found to be 2.08 +/- 0.04 eV below that of Si. The conduction band offset (CBO) of InGaN/Si heterojunction is found similar to 0.74 eV and a type-II heterojunction. (C) 2012 The Japan Society of Applied Physics
Resumo:
Temperature dependent photoemission studies on lightly doped (x = 0.025) sodium tungsten bronzes, NaxWO3 have been investigated by high-resolution photoemission spectroscopy. The experimental results show evidence for polaron formation at the valence band edge and the photoemission spectra taken in different modes of the electron analyzer suggest that the density of states at the valence band edge gradually moves to other k-points in the Brillouin zone with increasing temperature and explain the dynamics of polarons in the insulating disordered sodium tungsten bronzes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
Resumo:
Hexagonal Ge3N4 layer was prepared on Ge surface by in situ direct atomic source nitridation and it is promising buffer layer to grow GaN on Ge (111). The valence band offset (VBO) of GaN/Ge3N4/Ge heterojunctions is determined by X-ray photoemission spectroscopy. The valence band (VB) of Ge3N4 is found to be 0.38?+/-?0.04?eV above the GaN valance band and 1.14?+/-?0.04?eV below the Ge. The GaN/Ge3N4 and Ge3N4/Ge are found type-II and type-I heterojunctions, respectively. The exact measurements of the VBO and conduction band offset (CBO) are important for use of GaN/Ge3N4/Ge (111) heterosystems.
Resumo:
We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n >= 1. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696033]
Resumo:
When a light beam passes through any medium, the effects of interaction of light with the material depend on the field intensity. At low light intensities the response of materials remain linear to the amplitude of the applied electromagnetic field. But for sufficiently high intensities, the optical properties of materials are no longer linear to the amplitude of applied electromagnetic field. In such cases, the interaction of light waves with matter can result in the generation of new frequencies due to nonlinear processes such as higher harmonic generation and mixing of incident fields. One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular system. Ultrafast Raman loss spectroscopy (URLS) is analogous to SRS but is more sensitive than SRS. In this paper, we present the theoretical basis of SRS (URLS) techniques which have been developed in our laboratory.
Resumo:
We report gas phase mid-infrared spectra of 1- and 2- methyl naphthalenes at 0.2 cm(-1) resolution. Assignment of observed bands have been made using scaled quantum mechanical (SQM) calculations where the force fields rather the frequencies are scaled to find a close fit between observed and calculated bands. The structure of the molecules has been optimized using B3LYP level of theory in conjunction with standard 6-311G** basis set to obtain the harmonic frequencies. Using the force constants in Cartesian coordinates from the Gaussian output, scaled force field calculations are carried out using a modified version of the UMAT program in the QCPE package. Potential energy distributions of the normal modes obtained from such calculations helped us assign the observed bands and identify the unique features of the spectra of 1- and 2-MNs which are important for their isomeric identification.
Resumo:
Layered LiNi0.8Co0.2O2 crystallizing in R (3) over barm space group is synthesized by decomposing the constituent metal-nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals <2% Li-Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge-discharge cycles reflect a first-discharge capacity of 184 mAh g(-1) which is stabilized at 170 mAh g(-1) over 50 cycles.
Resumo:
Benzene carboxylic acids and Benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by H-1, C-13 and N-15 NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]
Resumo:
The host-guest chemistry of most inorganic layered solids is limited to ion-exchange reactions. The guest species are either cations or anions to compensate for the charge deficit, either positive or negative, of the inorganic layers. Here, we outline a strategy to include neutral molecules like ortho- and para-chloranil, that are known to be good acceptors in donor-acceptor or charge-transfer complexes, within the galleries of a layered solid. We have succeeded in including neutral ortho- and para-chloranil molecules within the galleries of an Mg-Al layered double hydroxide (LDH) by using charge-transfer interactions with preintercalated p-aminobenzoate ions as the driving force. The p-aminobenzoate ions are introduced in the Mg-Al LDH via ion exchange. The intercalated LDH can adsorb ortho- and para-chloranil from chloroform solutions by forming charge-transfer complexes with the p-aminobenzoate anions present in the galleries. We use X-ray diffraction, spectroscopy, and molecular dynamics simulations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide.
Resumo:
The reaction of a tridentate Schiff base ligand HL (2-(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas Ni3L2(OAc)(2)(mu(1,1)-N-3)(2)(H2O)(2)]center dot 2H(2)O (1) and Ni2L2(mu(1,1)-N-3) (mu(1,3)-N-3)](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a mu(2)-phenwddo, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-mu(2)-phenoxido and EO azido) dimeric Ni-2 units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.
Resumo:
Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.
Resumo:
Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.