840 resultados para Evolutionary clustering
Resumo:
The post-processing of association rules is a difficult task, since a large number of patterns can be obtained. Many approaches have been developed to overcome this problem, as objective measures and clustering, which are respectively used to: (i) highlight the potentially interesting knowledge in domain; (ii) structure the domain, organizing the rules in groups that contain, somehow, similar knowledge. However, objective measures don't reduce nor organize the collection of rules, making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, making the search for relevant knowledge not so easy. This work proposes the PAR-COM (Post-processing Association Rules with Clustering and Objective Measures) methodology that, combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. Thereby, PAR-COM minimizes the user's effort during the post-processing process.
Resumo:
A body of knowledge in Software Engineering requires experiments replications. The knowledge generated by a study is registered in the so-called lab package, which, must be reviewed by an eventual research group with the intention to replicate it. However, researchers face difficulties reviewing the lab package, what leads to problems in share knowledge among research groups. Besides that, the lack of standardization is an obstacle to the integration of the knowledge from an isolated study in a common body of knowledge. In this sense, ontologies can be applied, since they can be seen as a standard that promotes the shared understanding of the experiment information structure. In this paper, we present a workflow to generate lab packages based on EXPEiiQntology, an ontology of controlled experiments domain. In addition, by means of lab packages instantiation, it is possible to evolve the ontology, in order to deal with new concepts that may appear in different lab packages. The iterative ontology evolution aims at achieve a standard that is able to accommodate different lab packages and, hence, facilitate to review and understand their content.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.
Resumo:
Parkinson's disease (PD) automatic identification has been actively pursued over several works in the literature. In this paper, we deal with this problem by applying evolutionary-based techniques in order to find the subset of features that maximize the accuracy of the Optimum-Path Forest (OPF) classifier. The reason for the choice of this classifier relies on its fast training phase, given that each possible solution to be optimized is guided by the OPF accuracy. We also show results that improved other ones recently obtained in the context of PD automatic identification. © 2011 IEEE.
Resumo:
In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.
Resumo:
Wolbachia are intracellular bacteria that commonly infect arthropods. Its prevalence among ants of the genus Solenopsis is high. In the present study, the presence and distribution of these endosymbionts was examined among populations of Solenopsis spp. from Brazil. A phylogenetic analysis based on the wsp gene was conducted to infer the evolutionary history of Wolbachia infections within the populations surveyed. A high frequency of Wolbachia bacteria was observed among the genus Solenopsis, 51% of the colonies examined were infected. Incidence was higher in populations from southern Brazil. However, little genetic variability was found among different Wolbachia strains within supergroups A and B. Our findings also suggest that horizontal transmission events can occur through the social parasite S. daguerrei. © 2012 Elsevier Inc..
Resumo:
This paper examines the current level of adoption of Supply Chain Management (SCM) practices in the electro-electronic sector in Brazil and aims to identify the management and Information Technology (IT) actions that have been implemented to support the adoption of those practices. An e-mail survey was conducted. Descriptive statistics techniques were employed for data analysis. This study makes contributions to the electro-electronics sector and to the topics related to SCM, such as identifi cation and level of adoption of SCM practices. Another contribution of this research is the investigation of whether approaches such as Enterprise Resources Planning (ERP), Workshop with Customers, Electronic Data Interchange (EDI), Workshop with Suppliers and electronic Kanban are commonly used to support SCM practices. So far, this is the fi rst research on SCM practices in the electro-electronics sector in Brazil. Copyright © 2012 Inderscience Enterprises Ltd.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.
Resumo:
Although association mining has been highlighted in the last years, the huge number of rules that are generated hamper its use. To overcome this problem, many post-processing approaches were suggested, such as clustering, which organizes the rules in groups that contain, somehow, similar knowledge. Nevertheless, clustering can aid the user only if good descriptors be associated with each group. This is a relevant issue, since the labels will provide to the user a view of the topics to be explored, helping to guide its search. This is interesting, for example, when the user doesn't have, a priori, an idea where to start. Thus, the analysis of different labeling methods for association rule clustering is important. Considering the exposed arguments, this paper analyzes some labeling methods through two measures that are proposed. One of them, Precision, measures how much the methods can find labels that represent as accurately as possible the rules contained in its group and Repetition Frequency determines how the labels are distributed along the clusters. As a result, it was possible to identify the methods and the domain organizations with the best performances that can be applied in clusters of association rules.
Resumo:
In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks. © 2012 IEEE.
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation. © 2012 IEEE.
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
Resumo:
The family Loricariidae with 813 nominal species is one of the largest fish families of the world. Hypostominae, its more complex subfamily, was recently divided into five tribes. The tribe Hypostomini is composed of a single genus, Hypostomus Lacépède, 1803, which exhibits the largest karyotypic diversity in the family Loricariidae. With the main objective of contributing to a better understanding of the relationship and the patterns of evolution among the karyotypes of Hypostomus species, cytogenetic studies were conducted in six species of the genus from Brazil and Venezuela. The results show a great chromosome variety with diploid numbers ranging from 2n=68 to 2n=76, with a clear predominance of acrocentric chromosomes. The Ag-NORs are located in terminal position in all species analyzed. Three species have single Ag-NORs (Hypostomus albopunctatus (Regan, 1908), H. prope plecostomus (Linnaeus, 1758), and H. prope paulinus (Ihering, 1905)) and three have multiple Ag-NORs (H. ancistroides (Ihering, 1911), H. prope iheringi (Regan, 1908), and H. strigaticeps (Regan, 1908)). In the process of karyotype evolution of the group, the main type of chromosome rearrangements was possibly centric fissions, which may have been facilitated by the putative tetraploid origin of Hypostomus species. The relationship between the karyotype changes and the evolution in the genus is discussed. © Anderson Luis Alves et al.