993 resultados para Essential Variable
Resumo:
The heterotrimeric kinesin-II motor in Caenorhabditis elegans consists of KLP-20, KLP-11, and KAP-1 subunits and broadly functions in cellular transport for the development of biological structures including cilia and axons. The results of this paper support the ubiquitous and necessary role kinesin-II motors have in development, particularly the KLP-20 microtubule-associating subunit. Mutations in klp-20 result in a variable abnormal (vab) phenotype characterized by observable epidermal defects, although the role of this gene in development and the mechanism by which the vab phenotype is produced is largely unknown. The vab phenotype is highly penetrant in the first larval stage (L1) of C. elegans, which supports that klp-20 functions in early development. Ciliated amphid sensory neurons can be stained with a fluorescent dye, DiI, to simultaneously test cilia structure and function, as well as the morphology of the amphid sensory organ. Reduced dye uptake in klp-20 mutant L1s suggests that the microtubule-based cilia are under-developed as a result of defective kinesin-II function. Consistent observations of the PLM mechanosensory neuron using the zdIs5 reporter suggest that klp-20 has an essential role in neuron development, as mutations to klp-20 result in under-developed PLM axons. Qualitative observations suggest there may be an interaction between the development of the overlying epidermis and the underlying nervous system, as a more severe vab phenotype is observed simultaneously with reduced dye uptake, and hence amphid sensory cilia under-development. Furthermore, a more severe vab phenotype manifested as large bumps on the posterior epidermis appears to be spatially correlated with PLM defects. The results presented and discussed in this paper suggest that KLP-20 has a necessary role in neurodevelopment and epidermal morphogenesis in C. elegans during embryogenesis.
Resumo:
We study entanglement accumulation in a memory built out of two continuous variable systems interacting with a qubit that mediates their indirect coupling. We show that, in contrast with the case of bidimensional Hilbert spaces, entanglement superior to one ebit can be accumulated in the memory, even though no entangled resource is used. The protocol is immediately implementable and we assess the role of the main imperfections.
Resumo:
The density of reactive carboxyl groups on the surface of poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) was modulated using a combination of high-molecular weight (MW) encapped and low MW non-encapped PLGA. Carboxyl groups were activated using carbodiimide chemistry and conjugated to bovine serum albumin and a model polyclonal antibody. Activation of carboxyl,groups in solution-phase PLGA prior to NP formation was compared with a postformation activation of peripheral carboxyl groups on intact NP. Activation before or after NP formation did not influence conjugation efficiency to NP prepared using 100% of the low-MW PLGA. The effect of steric stabilization using poly(vinyl alcohol) reduced conjugation of a polyclonal antibody from 62 mu g/(mg NP) to 32 mu g/(mg NP), but enhanced particulate stability. Increasing the amount of a high-MW PLGA also reduced Conjugation, with the activation post-formation still superior to the preformation approach. Drug release studies showed that high proportions of high-MW PLGA in the NP produced a longer sustained release profile of a model drug (celecoxib). It can be concluded that activating intact PLGA NP is superior to activating component parts prior to NP formation. Also, high MW PLGA could be used to prolong drug release, but at the expense of conjugation efficiency on to the NP surface. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 873-884, 2008
Resumo:
Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to evaluate. This paper presents a provably convergent trust-region model-management methodology for variableparameterization design models: that is, models for which the design parameters are defined over different spaces. Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design optimization problems. Results for a wing design problem and a flapping-flight problem show that the method outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves 76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time savings, although it converges to a different local minimum than did the benchmark.
Resumo:
IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition.