952 resultados para Environmental Exposure.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Environmental conditions early in life may imprint the circadian system and influence response to environmental signals later in life. We previously determined that a large springtime increase in solar insolation at the onset location was associated with a younger age of onset of bipolar disorder, especially with a family history of mood disorders. This study investigated whether the hours of daylight at the birth location affected this association. Methods: Data collected previously at 36 collection sites from 23 countries were available for 3896 patients with bipolar I disorder, born between latitudes of 1.4N and 70.7N, and 1.2S and 41.3S. Hours of daylight variables for the birth location were added to a base model to assess the relation between the age of onset and solar insolation. Results: More hours of daylight at the birth location during early life was associated with an older age of onset, suggesting reduced vulnerability to the future circadian challenge of the springtime increase in solar insolation at the onset location. Addition of the minimum of the average monthly hours of daylight during the first 3 months of life improved the base model, with a significant positive relationship to age of onset. Coefficients for all other variables remained stable, significant and consistent with the base model. Conclusions: Light exposure during early life may have important consequences for those who are susceptible to bipolar disorder, especially at latitudes with little natural light in winter. This study indirectly supports the concept that early life exposure to light may affect the long term adaptability to respond to a circadian challenge later in life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Terrestrial Trunked Radio (TETRA) is a telecommunications system widely used by police and emergency services around the world. The Stewart Report on mobile telephony and health raised questions about possible health effects associated with TETRA signals. This study investigates possible effects of TETRA signals on the electroencephalogram and electrocardiogram in human volunteers. METHODS: Blinded randomized provocation study with a standardized TETRA signal or sham exposure. In the first of two experiments, police officers had a TETRA set placed first against the left temple and then the upper-left quadrant of the chest and the electroencephalogram was recorded during rest and active cognitive processing. In the second experiment, volunteers were subject to chest exposure of TETRA whilst their electroencephalogram and heart rate variability derived from the electrocardiogram were recorded. RESULTS: In the first experiment, we found that exposure to TETRA had consistent neurophysiological effects on the electroencephalogram, but only during chest exposure, in a pattern suggestive of vagal nerve stimulation. In the second experiment, we observed changes in heart rate variability during exposure to TETRA but the electroencephalogram effects were not replicated. CONCLUSIONS: Observed effects of exposure to TETRA signals on the electroencephalogram (first experiment) and electrocardiogram are consistent with vagal nerve stimulation in the chest by TETRA. However given the small effect on heart rate variability and the lack of consistency on the electroencephalogram, it seems unlikely that this will have a significant impact on health. Long-term monitoring of the health of the police force in relation to TETRA use is on-going.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major consequence of contamination at the local level’s population as it relates to environmental health and environmental engineering is childhood lead poisoning. Environmental contamination is one of the pressing environmental concerns facing the world today. Current approaches often focus on large contaminated industrial size sites that are designated by regulatory agencies for site remediation. Prior to this study, there were no known published studies conducted at the local and smaller scale, such as neighborhoods, where often much of the contamination is present to remediate. An environmental health study of local lead-poisoning data in Liberty City, Little Haiti and eastern Little Havana in Miami-Dade County, Florida accounted for a disproportionately high number of the county’s reported childhood lead poisoning cases. An engineering system was developed and designed for a comprehensive risk management methodology that is distinctively applicable to the geographical and environmental conditions of Miami-Dade County, Florida. Furthermore, a scientific approach for interpreting environmental health concerns, while involving detailed environmental engineering control measures and methods for site remediation in contained media was developed for implementation. Test samples were obtained from residents and sites in those specific communities in Miami-Dade County, Florida (Gasana and Chamorro 2002). Currently lead does not have an Oral Assessment, Inhalation Assessment, and Oral Slope Factor; variables that are required to run a quantitative risk assessment. However, various institutional controls from federal agencies’ standards and regulation for contaminated lead in media yield adequate maximum concentration limits (MCLs). For this study an MCL of .0015 (mg/L) was used. A risk management approach concerning contaminated media involving lead demonstrates that the linkage of environmental health and environmental engineering can yield a feasible solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The etiology of central nervous system tumors (CNSTs) is mainly unknown. Aside from extremely rare genetic conditions, such as neurofibromatosis and tuberous sclerosis, the only unequivocally identified risk factor is exposure to ionizing radiation, and this explains only a very small fraction of cases. Using meta-analysis, gene networking and bioinformatics methods, this dissertation explored the hypothesis that environmental exposures produce genetic and epigenetic alterations that may be involved in the etiology of CNSTs. A meta-analysis of epidemiological studies of pesticides and pediatric brain tumors revealed a significantly increased risk of brain tumors among children whose mothers had farm-related exposures during pregnancy. A dose response was recognized when this risk estimate was compared to those for risk of brain tumors from maternal exposure to non-agricultural pesticides during pregnancy, and risk of brain tumors among children exposed to agricultural activities. Through meta-analysis of several microarray studies which compared normal tissue to astrocytomas, we were able to identify a list of 554 genes which were differentially expressed in the majority of astrocytomas. Many of these genes have in fact been implicated in development of astrocytoma, including EGFR, HIF-1α, c-Myc, WNT5A, and IDH3A. Reverse engineering of these 554 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme (GBM) were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. Lastly, bioinformatics analysis of environmental databases and curated published results on GBM was able to identify numerous potential pathways and geneenvironment interactions that may play key roles in astrocytoma development. Findings from this research have strong potential to advance our understanding of the etiology and susceptibility to CNSTs. Validation of our ‘key genes’ and pathways could potentially lead to useful tools for early detection and novel therapeutic options for these tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.