998 resultados para Engineering instruments.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I4(1)/a with a short axis of 3.7926 (9) angstrom. The structure is unique in that both type I and type II Cl.....Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl....Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P2(1)/c packing of compound (3) is different; while the structure still has O-H....O hydrogen bonds, the tetramer O-H.....O synthon seen in (1) and (2) is not seen. Rather than a type I Br....Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br....O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P2(1)/c and I4(1)/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br....Br interaction in (2) is stronger than the corresponding type II Cl....Cl interaction in (1), leading to elastic bending of the former upon application of mechanical stress, which contrasts with the plastic deformation of (1). The observation of elastic deformation in (2) is noteworthy; in that it finds an explanation based on the strengths of the respective halogen bonds, it could also be taken as a good starting model for future property design. Cl/Br isostructurality is studied with the Cambridge Structural Database and it is indicated that this isostructurality is based on shape and size similarity of Cl and Br, rather than arising from any chemical resemblance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain better materials, control over the precise location of nanoparticles is indispensable. It is shown here that ordered arrangements of nanoparticles, possessing different characteristics (electrical/ magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiation, the key parameters of high electrical conductivity and large dielectric/magnetic loss are targeted here by including a conductive material multiwall carbon nanotubes, MWNTs], ferroelectric nanostructured material with associated relaxations in the GHz frequency barium titanate, BT] and lossy ferromagnetic nanoparticles nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs were modified using an electron acceptor molecule, a derivative of perylenediimide, which facilitates p-p stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, an ordered arrangement can be tailored. To accomplish this, both BT and NF were first hydroxylated followed by the introduction of amine-terminal groups on the surface. The latter facilitated nucleophilic substitution reactions with PC and resulted in their precise location. In this study, we have shown for the first time that by a compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection losses were ca. -18 dB (for the MWNT/BT mixture) and -29 dB (for the MWNT/NF mixture), and the shielding occurred primarily through reflection. Interestingly, by adopting the compartmentalized approach wherein the lossy materials were in the PC phase and the conductive materials (MWNT) were in the PVDF phase, outstanding reflection losses of ca. -57 dB (for the BT and MWNT combination) and -67 dB (for the NF and MWNT combination) were noted and the shielding occurred primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper probes two research questions by ascertaining the factors which distinguish (i) innovative SMEs from those which are not, and (ii) SMEs which experienced a higher sales growth from those which experienced a lower sales growth, with reference to 197 engineering industry SMEs in Bangalore city. The differentiating factors between innovative and non-innovative SMEs brought out that SMEs must have ``own resources and capabilities'' in the form of internal strength and definite internal strategy if they have to innovate successfully. Younger and smaller firms which are ``entrepreneurial'' in nature and which are innovative contributed to higher sales growth of SMEs compared to older and larger firms which are ``salary-substitute firms'' in nature and which are not innovative. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a minimum, reflection loss of 70 a was achieved, for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanopartides (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively, localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, (GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTS (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends With MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the laboratory investigation performed on clay beds reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials are reported in this paper. To use bamboo effectively, three-dimensional cells (similar to geocells) and two-dimensional grids (similar to geogrids) are formed using bamboo (termed bamboo cells and bamboo grids, respectively). The performance of clay beds reinforced with bamboo cells and bamboo grids is compared with that of clay beds reinforced with geocells and geogrids. The bearing capacity of the clay bed increased by six times when a combination of geocell and geogrid was used. The ultimate bearing capacity of the clay bed reinforced with bamboo cell and bamboo grid was found to be 1.3 times more than that of clay bed reinforced with geocell and geogrid. In addition, substantial reduction in the footing settlement and the surface deformation was observed. The tensile strength and surface roughness of bamboo were found to be nine times and three times, respectively, higher than geocell materials. The bamboo was treated chemically to increase its durability. Although the performance of bamboo was reduced by 15-20% after the chemical treatment, its performance was better than its commercial counterparts. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broader goal of the research being described here is to automatically acquire diagnostic knowledge from documents in the domain of manual and mechanical assembly of aircraft structures. These documents are treated as a discourse used by experts to communicate with others. It therefore becomes possible to use discourse analysis to enable machine understanding of the text. The research challenge addressed in the paper is to identify documents or sections of documents that are potential sources of knowledge. In a subsequent step, domain knowledge will be extracted from these segments. The segmentation task requires partitioning the document into relevant segments and understanding the context of each segment. In discourse analysis, the division of a discourse into various segments is achieved through certain indicative clauses called cue phrases that indicate changes in the discourse context. However, in formal documents such language may not be used. Hence the use of a domain specific ontology and an assembly process model is proposed to segregate chunks of the text based on a local context. Elements of the ontology/model, and their related terms serve as indicators of current context for a segment and changes in context between segments. Local contexts are aggregated for increasingly larger segments to identify if the document (or portions of it) pertains to the topic of interest, namely, assembly. Knowledge acquired through such processes enables acquisition and reuse of knowledge during any part of the lifecycle of a product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (similar to 0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate the problem of detecting the constituent instruments in a polyphonic music piece as a joint decoding problem. From monophonic data, parametric Gaussian Mixture Hidden Markov Models (GM-HMM) are obtained for each instrument. We propose a method to use the above models in a factorial framework, termed as Factorial GM-HMM (F-GM-HMM). The states are jointly inferred to explain the evolution of each instrument in the mixture observation sequence. The dependencies are decoupled using variational inference technique. We show that the joint time evolution of all instruments' states can be captured using F-GM-HMM. We compare performance of proposed method with that of Student's-t mixture model (tMM) and GM-HMM in an existing latent variable framework. Experiments on two to five polyphony with 8 instrument models trained on the RWC dataset, tested on RWC and TRIOS datasets show that F-GM-HMM gives an advantage over the other considered models in segments containing co-occurring instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.