924 resultados para Energy Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological capability (TC) plays a strategic role in the competitive advantage of not only individual corporate entities but also entire industries. This paper investigates the crucial factors that affect technological capability development by Energy Service Companies (ESCOs) in China. It identifies how differently sized ESCOs make progress in developing TCs. Through looking at the successes achieved by developed countries in the field of energy conservation, ESCOs are able to improve energy efficiency and reduce emissions and are deemed to provide an effective means of conserving energy in China. Existing literature indicates that limited TC levels of are one of the crucial barriers facing Chinese ESCOs. Through investigating three different sizes of Chinese ESCO - small, medium-sized and large - this paper provides a framework to present the idea that Chinese ESCOs' TC development is affected by four key internal and external capabilities: management capability, investment capability, innovation capability and linkage capability. Through comparative analysis, the paper establishes that small and medium-sized private ESCOs are mainly affected by investment and linkage capabilities. Large state-owned ESCOs are mainly affected by innovation and management capability. In addition, all three types of ESCO exhibit a strong desire to develop their technological capability, but small and medium-sized ESCOs exhibit a stronger desire to conduct research and development (R&D) than large ESCOs, whilst large ESCOs prefer to increase their technical reserves through acquisition. This paper identifies factors that affect Chinese ESCOs' TC, but it does intend to address the problem of how to reduce the negative effects of limited TC or the question of how to improve the TC development of Chinese ESCOs effectively. This paper contributes to the field of TC development in the ESCO industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines 'availability' and the input metrics of operational expenditure (OPEX) for wave energy projects and reports on a case study which assesses the impact of these inputs on project profit returns. Case study simulations modelled a 75 MW wave energy project at two locations; the west coast of Ireland and the north coast of Portugal. Access and availability with respect to weather windows at both locations are discussed and their impact on energy output and wave farm operations is quantified. The input metrics used to calculate OPEX of wave energy projects are defined as well as the impact of OPEX on project net present value (NPV) and internal rate of return (IRR). Results indicate that access and resultant availability factors have a significant impact on case study results by reducing energy output and correspondingly financial returns. Furthermore, the technology maturity level designated for a project also impacts on availability factors and consequently energy output and NPV. Case study profits proved to be very sensitive to annual OPEX, especially if overhaul and replacement costs were accounted for. As a result of the impact of 'availability' on project profit returns. Feed-in tariffs will need to be tailored to the location in question as well as the device technology maturity level, with case study simulations indicating that high FIT will be required to support early stage WEC projects. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofouling, the accumulation of biomolecules, cells, organisms and their deposits on submerged and implanted surfaces, is a ubiquitous problem across various human endeavors including maritime operations, medicine, food industries and biotechnology. Since several decades, there have been substantial research efforts towards developing various types of antifouling and fouling release approaches to control bioaccumulation on man-made surfaces. In this work we hypothesized, investigated and developed dynamic change of the surface area and topology of elastomers as a general approach for biofouling management. Further, we combined dynamic surface deformation of elastomers with other existing antifouling and fouling-release approaches to develop multifunctional, pro-active biofouling control strategies.

This research work was focused on developing fundamental, new and environment-friendly approaches for biofouling management with emphasis on marine model systems and applications, but which also provided fundamental insights into the control of infectious biofilms on biomedical devices. We used different methods (mechanical stretching, electrical-actuation and pneumatic-actuation) to generate dynamic deformation of elastomer surfaces. Our initial studies showed that dynamic surface deformation methods are effective in detaching laboratory grown bacterial biofilms and barnacles. Further systematic studies revealed that a threshold critical surface strain is required to debond a biofilm from the surface, and this critical strain is dependent on the biofilm mechanical properties including adhesion energy, thickness and modulus. To test the dynamic surface deformation approach in natural environment, we conducted field studies (at Beaufort, NC) in natural seawater using pneumatic-actuation of silicone elastomer. The field studies also confirmed that a critical substrate strain is needed to detach natural biofilm accumulated in seawater. Additionally, the results from the field studies suggested that substrate modulus also affect the critical strain needed to debond biofilms. To sum up, both the laboratory and the field studies proved that dynamic surface deformation approach can effectively detach various biofilms and barnacles, and therefore offers a non-toxic and environmental friendly approach for biofouling management.

Deformable elastomer systems used in our studies are easy to fabricate and can be used as complementary approach for existing commercial strategies for biofouling control. To this end, we aimed towards developed proactive multifunctional surfaces and proposed two different approaches: (i) modification of elastomers with antifouling polymers to produce multifunctional, and (ii) incorporation of silicone-oil additives into the elastomer to enhance fouling-release performance.

In approach (i), we modified poly(vinylmethylsiloxane) elastomer surfaces with zwitterionic polymers using thiol-ene click chemistry and controlled free radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionalities. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. In approach (ii), we incorporated silicone-oil additives in deformable elastomer and studied synergistic effect of silicone-oils and surface strain on barnacle detachment. We hypothesized that incorporation of silicone-oil additive reduces the amount of surface strain needed to detach barnacles. Our experimental results supported the above hypothesis and suggested that surface-action of silicone-oils plays a major role in decreasing the strain needed to detach barnacles. Further, we also examined the effect of change in substrate modulus and showed that stiffer substrates require lower amount of strain to detach barnacles.

In summary, this study shows that (1) dynamic surface deformation can be used as an effective, environmental friendly approach for biofouling control (2) stretchable elastomer surfaces modified with anti-fouling polymers provides a pro-active, dual-mode approach for biofouling control, and (3) incorporation of silicone-oils additives into stretchable elastomers improves the fouling-release performance of dynamic surface deformation technology. Dynamic surface deformation by itself and as a supplementary approach can be utilized biofouling management in biomedical, industrial and marine applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a model for intelligent agents (sensors) on a Wireless Sensor Network to guard against energy-drain attacks in an energy-efficient and autonomous manner. This is intended to be achieved via an energy-harvested Wireless Sensor Network using a novel architecture to propagate knowledge to other sensors based on automated reasoning from an attacked sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of high efficacy, long lifespan, and environment-friendly operation, LED lighting devices become more and more popular in every part of our life, such as ornament/interior lighting, outdoor lightings and flood lighting. The LED driver is the most critical part of the LED lighting fixture. It heavily affects the purchasing cost, operation cost as well as the light quality. Design a high efficiency, low component cost and flicker-free LED driver is the goal. The conventional single-stage LED driver can achieve low cost and high efficiency. However, it inevitably produces significant twice-line-frequency lighting flicker, which adversely affects our health. The conventional two-stage LED driver can achieve flicker-free LED driving at the expenses of significantly adding component cost, design complexity and low the efficiency. The basic ripple cancellation LED driving method has been proposed in chapter three. It achieves a high efficiency and a low component cost as the single-stage LED driver while also obtaining flicker-free LED driving performance. The basic ripple cancellation LED driver is the foundation of the entire thesis. As the research evolving, another two ripple cancellation LED drivers has been developed to improve different aspects of the basic ripple cancellation LED driver design. The primary side controlled ripple cancellation LED driver has been proposed in chapter four to further reduce cost on the control circuit. It eliminates secondary side compensation circuit and an opto-coupler in design while at the same time maintaining flicker-free LED driving. A potential integrated primary side controller can be designed based on the proposed LED driving method. The energy channeling ripple cancellation LED driver has been proposed in chapter five to further reduce cost on the power stage circuit. In previous two ripple cancellation LED drivers, an additional DC-DC converter is needed to achieve ripple cancellation. A power transistor has been used in the energy channeling ripple cancellation LED driving design to successfully replace a separate DC-DC converter and therefore achieved lower cost. The detailed analysis supports the theory of the proposed ripple cancellation LED drivers. Simulation and experiment have also been included to verify the proposed ripple cancellation LED drivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy-efficient computing remains a critical challenge across the wide range of future data-processing engines — from ultra-low-power embedded systems to servers, mainframes, and supercomputers. In addition, the advent of cloud and mobile computing as well as the explosion of IoT technologies have created new research challenges in the already complex, multidimensional space of modern and future computer systems. These new research challenges led to the establishment of the IEEE Rebooting Computing Initiative, which specifically addresses novel low-power solutions and technologies as one of the main areas of concern.With this in mind, we thought it timely to survey the state of the art of energy-efficient computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model for availability analysis of standalone hybrid microgrid. The microgrid used in the study consists of wind, solar storage and diesel generator. Boolean driven Markov process is used to develop the availability of the system in the proposed method. By modifying the developed model, the relationship between the availability of the system with the fine (normal) weather and disturbed (stormy) weather durations are analyzed. Effects of different converter technologies on the availability of standalone microgrid were investigated and the results have shown that the availability of microgrid increased by 5.80 % when a storage system is added. On the other hand, the availability of standalone microgrid could be overestimated by 3.56 % when weather factor is neglected. In the same way 200, 500 and 1000 hours of disturbed weather durations reduced the availability of the system by 5.36%, 9.73% and 13.05 %, respectively. In addition, the hybrid energy storage cascade topology with a capacitor in the middle maximized the system availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in transport technology and power electronics and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. It is widely acknowledged that inappropriate provision and dispatch of EV charging can lead to negative impacts on power system infrastructure. This paper considers EV requirements and proposes a module which uses owner participation, through mobile phone apps and on-board diagnostics II (OBD-II), for scheduled vehicle charging. A multi-EV reference and single-EV real-time response (MRS2R) online algorithm is proposed to calculate the maximum and minimum adjustable limits of necessary capacity, which forms part of decision-making support in power system dispatch. The proposed EV dispatch module is evaluated in a case study and the influence of the mobile app, EV dispatch trending and commercial impact is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of reliable methods for optimised energy storage and generation is one of the most imminent challenges in modern power systems. In this paper an adaptive approach to load leveling problem using novel dynamic models based on the Volterra integral equations of the first kind with piecewise continuous kernels. These integral equations efficiently solve such inverse problem taking into account both the time dependent efficiencies and the availability of generation/storage of each energy storage technology. In this analysis a direct numerical method is employed to find the least-cost dispatch of available storages. The proposed collocation type numerical method has second order accuracy and enjoys self-regularization properties, which is associated with confidence levels of system demand. This adaptive approach is suitable for energy storage optimisation in real time. The efficiency of the proposed methodology is demonstrated on the Single Electricity Market of Republic of Ireland and Northern Ireland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately half of the houses in Northern Ireland were built before any form of minimum thermal specification or energy efficiency standard was enforced. Furthermore, 44% of households are categorised as being in fuel poverty; spending more than 10% of the household income to heat the house to bring it to an acceptable level of thermal comfort. To bring existing housing stock up to an acceptable standard, retrofitting for improving the energy efficiency is essential and it is also necessary to study the effectiveness of such improvements in future climate scenarios. This paper presents the results from a year-long performance monitoring of two houses that have undergone retrofits to improve energy efficiency. Using wireless sensor technology internal temperature, humidity, external weather, household gas and electricity usage were monitored for a year. Simulations using IES-VE dynamic building modelling software were calibrated using the monitoring data to ASHARE Guideline 14 standards. The energy performance and the internal environment of the houses were then assessed for current and future climate scenarios and the results show that there is a need for a holistic balanced strategy for retrofitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition to a “low carbon, climate resilient and environmentally sustainable economy by the end of the 
year 2050” has been conceptualised as the “national transition objective” in the Irish Climate Action and Low Carbon Development Bill, passed in late 2015. This has raised a myriad of questions over how this can be operationalised and resourced and whether it can maintain political momentum. This paper assesses the utility of framings informed by the transitions (MLP) and technological innovation systems perspectives in contributing to transformative societal processes, by examining their application in an Irish case study on policy and technology. Through a qualitative exploration of the broader societal and policy context of the energy sector and a more detailed examination of the innovation systems of selected niche technologies (bioenergy and electric vehicles), the Irish case study sought to identify potential catalysts for a sustainability transition in the energy sector in Ireland: where these exist, how these are being built or enabled, and barriers to change. Following a discussion on the theoretical approaches used, a description will be given of how these were applied in the conducting of the research on transition in Ireland case study and the key findings which emerged. A critical reflection will then be made on the utility of these perspectives (as applied) to contribute to broader processes of societal transformation in Ireland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.