863 resultados para Energy Efficient Routing Protocols
Resumo:
The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.
Resumo:
The session aims at analyzing efforts in up-scaling cleaner and more efficient energy solutions for poor people in developing countries by addressing the following questions: What are factors along the whole value chain and in the institutional, social, but also environmental space that enable up-scaling of improved pro-poor technologies? Are there differences between energy carriers or in different contexts? What are most promising entry points for up-scaling?
Resumo:
Until recently, measurements of energy expenditure (EE; herein defined as heat production) in respiration chambers did not account for the extra energy requirements of grazing dairy cows on pasture. As energy is first limiting in most pasture-based milk production systems, its efficient use is important. Therefore, the aim of the present study was to compare EE, which can be affected by differences in body weight (BW), body composition, grazing behavior, physical activity, and milk production level, in 2 Holstein cow strains. Twelve Swiss Holstein-Friesian (HCH; 616 kg of BW) and 12 New Zealand Holstein-Friesian (HNZ; 570 kg of BW) cows in the third stage of lactation were paired according to their stage of lactation and kept in a rotational, full-time grazing system without concentrate supplementation. After adaption, the daily milk yield, grass intake using the alkane double-indicator technique, nutrient digestibility, physical activity, and grazing behavior recorded by an automatic jaw movement recorder were investigated over 7d. Using the (13)C bicarbonate dilution technique in combination with an automatic blood sampling system, EE based on measured carbon dioxide production was determined in 1 cow pair per day between 0800 to 1400 h. The HCH were heavier and had a lower body condition score compared with HNZ, but the difference in BW was smaller compared with former studies. Milk production, grass intake, and nutrient digestibility did not differ between the 2 cow strains, but HCH grazed for a longer time during the 6-h measurement period and performed more grazing mastication compared with the HNZ. No difference was found between the 2 cow strains with regard to EE (291 ± 15.6 kJ) per kilogram of metabolic BW, mainly due to a high between-animal variation in EE. As efficiency and energy use are important in sustainable, pasture-based, organic milk production systems, the determining factors for EE, such as methodology, genetics, physical activity, grazing behavior, and pasture quality, should be investigated and quantified in more detail in future studies.
Resumo:
Ecological research and monitoring of lacustrine ecosystems often requires a whole-lake assessment of fish communities. Gillnet sampling offers an efficient means of estimating abundance, biomass and fish community composition. However the choice of gillnet sampling protocol may influence lake characterization via physical properties of the nets and allocation of sampling effort between littoral, benthic and pelagic habitats. This paper compares two commonly used, whole-lake sampling protocols applied across 17 prealpine, subalpine and alpine European lakes ranging widely in size, depth and altitude to determine their relative strength for research and management applications. Effort-corrected estimates of abundance, biomass and species richness were correlated between the protocols and both distinguished the trout-dominated alpine communities from subalpine and prealpine lakes dominated by whitefish and perch. A considerable amount of variance remained unexplained between the two protocols however, which seemed to correspond with differences in the proportion of effort among benthic and pelagic habitats. We suggest that both the European standard (CEN) and vertical (VERT) netting protocols are suitable for assessing ecological status and monitoring changes in lake fish communities through time. However the details of each protocol should be kept in mind when comparing fish communities between lakes. Mesh sizes used in CEN nets produce a more even size frequency distribution, suggesting that this protocol is most appropriate for assessing size structure of fish assemblages. The high proportion of netting effort in benthic habitats shallower than 70 m depth under the CEN protocol means that, particularly in larger lakes, outcomes will be disproportionately influenced by the ecological condition of this habitat. The VERT protocol presumably provides a more accurate estimate of whole-lake CPUE and community composition because effort, in terms of net area, is more evenly distributed across the entire volume of the lake. This is particularly important in large and deep lakes where pelagic habitats occupy a high proportion of the lake volume.
Resumo:
User experience on watching live videos must be satisfactory even under the inuence of different network conditions and topology changes, such as happening in Flying Ad-Hoc Networks (FANETs). Routing services for video dissemination over FANETs must be able to adapt routing decisions at runtime to meet Quality of Experience (QoE) requirements. In this paper, we introduce an adaptive beaconless opportunistic routing protocol for video dissemination over FANETs with QoE support, by taking into account multiple types of context information, such as link quality, residual energy, buffer state, as well as geographic information and node mobility in a 3D space. The proposed protocol takes into account Bayesian networks to define weight vectors and Analytic Hierarchy Process (AHP) to adjust the degree of importance for the context information based on instantaneous values. It also includes a position prediction to monitor the distance between two nodes in order to detect possible route failure.
Resumo:
The optical and luminescence properties of CaI2 and NaCl doped with divalent thulium are reported for solar energy applications. These halides strongly absorb solar light from the UV up to 900 nm due to the intense Tm2+ 4f13→4f125d1 electronic transitions. Absorption is followed by emission of 1140 nm light due to the 2F5/2→2F7/2 transition of the 4f13 configuration that can be efficiently converted to electric power by thin film CuInSe2 (CIS) solar cells. Because of a negligible spectral overlap between absorption and emission spectra, a luminescent solar concentrator (LSC) based on these black luminescent materials would not suffer from self-absorption losses. The Tm2+ doped halides may therefore lead to efficient semi-transparent power generating windows that absorb solar light over the whole visible spectrum. It will be shown that the power efficiency of the Tm2+ based LSCs can be up to four times higher compared to LSCs based on organic dyes or quantum dots.
Resumo:
Abstract Information-centric networking (ICN) offers new perspectives on mobile ad-hoc communication because routing is based on names but not on endpoint identifiers. Since every content object has a unique name and is signed, authentic content can be stored and cached by any node. If connectivity to a content source breaks, it is not necessarily required to build a new path to the same source but content can also be retrieved from a closer node that provides the same content copy. For example, in case of collisions, retransmissions do not need to be performed over the entire path but due to caching only over the link where the collision occurred. Furthermore, multiple requests can be aggregated to improve scalability of wireless multi-hop communication. In this work, we base our investigations on Content-Centric Networking (CCN), which is a popular {ICN} architecture. While related works in wireless {CCN} communication are based on broadcast communication exclusively, we show that this is not needed for efficient mobile ad-hoc communication. With Dynamic Unicast requesters can build unicast paths to content sources after they have been identified via broadcast. We have implemented Dynamic Unicast in CCNx, which provides a reference implementation of the {CCN} concepts, and performed extensive evaluations in diverse mobile scenarios using NS3-DCE, the direct code execution framework for the {NS3} network simulator. Our evaluations show that Dynamic Unicast can result in more efficient communication than broadcast communication, but still supports all {CCN} advantages such as caching, scalability and implicit content discovery.
Resumo:
This protocol describes a method for obtaining rodent Plasmodium parasite clones with high efficiency, which takes advantage of the normal course of Plasmodium in vitro exoerythrocytic development. At the completion of development, detached cells/merosomes form, which contain hundreds to thousands of merozoites. As all parasites within a single detached cell/merosome derive from the same sporozoite, we predicted them to be genetically identical. To prove this, hepatoma cells were infected simultaneously with a mixture of Plasmodium berghei sporozoites expressing either GFP or mCherry. Subsequently, individual detached cells/merosomes from this mixed population were selected and injected into mice, resulting in clonal blood stage parasite infections. Importantly, as a large majority of mice become successfully infected using this protocol, significantly less mice are necessary than for the widely used technique of limiting dilution cloning. To produce a clonal P. berghei blood stage infection from a non-clonal infection using this procedure requires between 4 and 5 weeks.
Resumo:
Current toxic tort cases have increased national awareness of health concerns and present an important avenue in which public health scientists can perform a vital function: in litigation, and in public health initiatives and promotions which may result. This review presents a systematic approach, using the paradigm of interactive public health disciplines, for the design of a matrix framework for medical surveillance of workers exposed to toxic substances. The matrix framework design addresses the required scientific bases to support the legal remedy of medical monitoring for workers injured as a result of their exposure to toxic agents. A background of recent legal developments which have a direct impact on the use of scientific expertise in litigation is examined in the context of toxic exposure litigation and the attainment of public health goals. The matrix model is applied to five different workplace exposures: dental mercury, firefighting, vinyl chloride manufacture, radon in mining and silica. An exposure matrix designed by the Department of Energy for government nuclear workers is included as a reference comparison to the design matrix. ^
Resumo:
Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.
Resumo:
This chapter aims at contributing to the trade and energy debate by focusing on the specific issue of export restrictions. It starts from the premise that a balanced and efficient regulation of export barriers in the energy sector would contribute to tackle emerging energy concerns such as energy security and the elimination of fossil fuel subsidies in light of the challenge of climate change mitigation. It assesses the adequacy of existing WTO rules on export restrictions and accordingly identifies the main gaps and inconsistencies inherent in the current disciplines from an energy-specific perspective. Finally, it discusses the merits of an energy-specific approach to advance existing disciplines in the most deficient area of export duties based on the systematisation of the Russian ‘model’. Such approach could raise the overall level of commitments in the energy sector while still allowing for the systemic applicability of GATT environmental exceptions in a manner consistent with the principle of sustainable development recognised in the Preamble of the WTO Agreement.
Resumo:
Background Energy Policy is one of the main drivers of Transport Policy. A number of strategies to reduce current energy consumption trends in the transport sector have been designed over the last decades. They include fuel taxes, more efficient technologies and changing travel behavior through demand regulation. But energy market has a high degree of uncertainty and the effectiveness of those policy options should be assessed. Methods A scenario based assessment methodology has been developed in the frame of the EU project STEPS. It provides an integrated view of Energy efficiency, environment, social and competitiveness impacts of the different strategies. It has been applied at European level and to five specific Regions. Concluding remarks The results are quite site specific dependent. However they show that regulation measures appear to be more effective than new technology investments. Higher energy prices could produce on their turn a deterioration of competitiveness and a threat for social goals.
Resumo:
La capacidad de comunicación de los seres humanos ha crecido gracias a la evolución de dispositivos móviles cada vez más pequeños, manejables, potentes, de mayor autonomía y más asequibles. Esta tendencia muestra que en un futuro próximo cercano cada persona llevaría consigo por lo menos un dispositivo de altas prestaciones. Estos dispositivos tienen incorporados algunas formas de comunicación: red de telefonía, redes inalámbricas, bluetooth, entre otras. Lo que les permite también ser empleados para la configuración de redes móviles Ad Hoc. Las redes móviles Ad Hoc, son redes temporales y autoconfigurables, no necesitan un punto de acceso para que los nodos intercambien información entre sí. Cada nodo realiza las tareas de encaminador cuando sea requerido. Los nodos se pueden mover, cambiando de ubicación a discreción. La autonomía de estos dispositivos depende de las estrategias de como sus recursos son utilizados. De tal forma que los protocolos, algoritmos o modelos deben ser diseñados de forma eficiente para no impactar el rendimiento del dispositivo, siempre buscando un equilibrio entre sobrecarga y usabilidad. Es importante definir una gestión adecuada de estas redes especialmente cuando estén siendo utilizados en escenarios críticos como los de emergencias, desastres naturales, conflictos bélicos. La presente tesis doctoral muestra una solución eficiente para la gestión de redes móviles Ad Hoc. La solución contempla dos componentes principales: la definición de un modelo de gestión para redes móviles de alta disponibilidad y la creación de un protocolo de enrutamiento jerárquico asociado al modelo. El modelo de gestión propuesto, denominado High Availability Management Ad Hoc Network (HAMAN), es definido en una estructura de cuatro niveles, acceso, distribución, inteligencia e infraestructura. Además se describen los componentes de cada nivel: tipos de nodos, protocolos y funcionamiento. Se estudian también las interfaces de comunicación entre cada componente y la relación de estas con los niveles definidos. Como parte del modelo se diseña el protocolo de enrutamiento Ad Hoc, denominado Backup Cluster Head Protocol (BCHP), que utiliza como estrategia de encaminamiento el empleo de cluster y jerarquías. Cada cluster tiene un Jefe de Cluster que concentra la información de enrutamiento y de gestión y la envía al destino cuando esta fuera de su área de cobertura. Para mejorar la disponibilidad de la red el protocolo utiliza un Jefe de Cluster de Respaldo el que asume las funciones del nodo principal del cluster cuando este tiene un problema. El modelo HAMAN es validado a través de un proceso la simulación del protocolo BCHP. El protocolo BCHP se implementa en la herramienta Network Simulator 2 (NS2) para ser simulado, comparado y contrastado con el protocolo de enrutamiento jerárquico Cluster Based Routing Protocol (CBRP) y con el protocolo de enrutamiento Ad Hoc reactivo denominado Ad Hoc On Demand Distance Vector Routing (AODV). Abstract The communication skills of humans has grown thanks to the evolution of mobile devices become smaller, manageable, powerful, more autonomy and more affordable. This trend shows that in the near future each person will carry at least one high-performance device. These high-performance devices have some forms of communication incorporated: telephony network, wireless networks, bluetooth, among others. What can also be used for configuring mobile Ad Hoc networks. Ad Hoc mobile networks, are temporary and self-configuring networks, do not need an access point for exchange information between their nodes. Each node performs the router tasks as required. The nodes can move, change location at will. The autonomy of these devices depends on the strategies of how its resources are used. So that the protocols, algorithms or models should be designed to efficiently without impacting device performance seeking a balance between overhead and usability. It is important to define appropriate management of these networks, especially when being used in critical scenarios such as emergencies, natural disasters, wars. The present research shows an efficient solution for managing mobile ad hoc networks. The solution comprises two main components: the definition of a management model for highly available mobile networks and the creation of a hierarchical routing protocol associated with the model. The proposed management model, called High Availability Management Ad Hoc Network (HAMAN) is defined in a four-level structure: access, distribution, intelligence and infrastructure. The components of each level: types of nodes, protocols, structure of a node are shown and detailed. It also explores the communication interfaces between each component and the relationship of these with the levels defined. The Ad Hoc routing protocol proposed, called Backup Cluster Head Protocol( BCHP), use of cluster and hierarchies like strategies. Each cluster has a cluster head which concentrates the routing information and management and sent to the destination when out of cluster coverage area. To improve the availability of the network protocol uses a Backup Cluster Head who assumes the functions of the node of the cluster when it has a problem. The HAMAN model is validated accross the simulation of their BCHP routing protocol. BCHP protocol has been implemented in the simulation tool Network Simulator 2 (NS2) to be simulated, compared and contrasted with a hierarchical routing protocol Cluster Based Routing Protocol (CBRP) and a routing protocol called Reactive Ad Hoc On Demand Distance Vector Routing (AODV).
Resumo:
Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.
Resumo:
During recent years, wind energy has moved from an emerging technology to a nearly competitive technology. This fact, coupled with an increasing global focus on environmental concern and a political desire of a certain level of diversification in the energy supply, ensures wind energy an important role in the future electricity market. For this challenge to be met in a cost-efficient way, a substantial part of new wind turbine installations is foreseen to be erected in big onshore or offshore wind farms. This fact makes the production, loading and reliability of turbines operating under such conditions of particular interest.