829 resultados para Energy Efficient
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.
Resumo:
Public genealogical databases are becoming increasingly populated with historical data and records of the current population`s ancestors. As this increasing amount of available information is used to link individuals to their ancestors, the resulting trees become deeper and more dense, which justifies the need for using organized, space-efficient layouts to display the data. Existing layouts are often only able to show a small subset of the data at a time. As a result, it is easy to become lost when navigating through the data or to lose sight of the overall tree structure. On the contrary, leaving space for unknown ancestors allows one to better understand the tree`s structure, but leaving this space becomes expensive and allows fewer generations to be displayed at a time. In this work, we propose that the H-tree based layout be used in genealogical software to display ancestral trees. We will show that this layout presents an increase in the number of displayable generations, provides a nicely arranged, symmetrical, intuitive and organized fractal structure, increases the user`s ability to understand and navigate through the data, and accounts for the visualization requirements necessary for displaying such trees. Finally, user-study results indicate potential for user acceptance of the new layout.
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.
Resumo:
Sodium alumino-phosphate glasses co-doped with Yb(3+) and Tm(3+) ions have been prepared with notably low OH(-) content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb(3+) acts as an efficient sensitizer of excitation energy at 0.98 mu m - which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm(3+) ions ((2)F(5/2), (3)H(6) --> (2)F(7/2), (3)H(5)). Through this process, the emitting level (3)F(4) is rapidly populated, generating improved emission at 1.8 mu m ((3)F(4) --> (3)H(6)). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non- radiative transfer to OH(-) groups were evaluated, and minimized when possible. The dipole - dipole energy transfer microscopic parameters corresponding to Yb(3+) --> Tm(3+), Yb(3+) --> Yb(3+) and Tm(3+) --> Tm(3+) transfers, calculated by the Forster-Dexter model, are C(Yb-Tm) = 2.9 x 10(-40) cm(6) s(-1), C(Yb-Yb) = 42 x 10(-40) cm(6) s(-1) and C(Tm-Tm) = 43 x 10(-40) cm(6) s(-1), respectively.
Resumo:
Unveiling the mechanisms of energy relaxation in biomolecules is key to our understanding of protein stability, allostery, intramolecular signaling, and long-lasting quantum coherence phenomena at ambient temperatures. Yet, the relationship between the pathways of energy transfer and the functional role of the residues involved remains largely unknown. Here, we develop a simulation method of mapping out residues that are highly efficient in relaxing an initially localized excess vibrational energy and perform site-directed mutagenesis functional assays to assess the relevance of these residues to protein function. We use the ligand binding domains of thyroid hormone receptor (TR) subtypes as a test case and find that conserved arginines, which are critical to TR transactivation function, are the most effective heat diffusers across the protein structure. These results suggest a hitherto unsuspected connection between a residue`s ability to mediate intramolecular vibrational energy redistribution and its functional relevance.
Resumo:
Photoluminescence and electroluminescence of PVK films doped with fac-[ClRe(CO)(3)(bpy)], bpy=2,2`-bipyridine, are investigated. Photoluminescence spectra of spin-coated PVK films (lambda(exc)=290 nm) exhibit a broad band centered at 405 nm. As the concentration of dopant increases, the polymer emission is quenched and a band at 555 nm appears (isosbestic point at 475 nm). In OLEDs with ITO/PEDOT:PSS/PVK/butylPBD/Al architecture doped with fac-[ClRe(CO)(3)(bpy)], the polymer host emission is completely quenched even at the lowest concentration of dopant. The electroluminescence spectra of the devices show that there is an efficient energy transfer from the host to the dopant, which exhibits a very intense emission at 580 nm. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Microwave (MW)-assisted cellulose dissolution in ionic liquids (ILs) has routinely led either to incomplete biopolymer solubilization, or its degradation. We show that these problems can be avoided by use of low-energy MW heating, coupled with efficient stirring. Dissolution of microcrystalline cellulose in the IL 1-allyl-3-methylimidazolium chloride has been achieved without changing its degree of polymerization; regenerated cellulose showed pronounced changes in its index of crystallinity, surface area, and morphology. MW-assisted functionalization of MCC by ethanoic, propanoic, butanoic, pentanoic, and hexanoic anhydrides has been studied. Compared with conventional heating, MW irradiation has resulted in considerable decrease in dissolution and reaction times. The value of the degree of substitution (DS) was found to be DS(ethanoate) > DS(propanoate) > DS(butanoate). The values of DS(pentanoate) and DS(hexanoate) were found to be slightly higher than DS(ethanoate). This surprising dependence on the chain length of the acylating agent has been reported before, but not rationalized. On the basis of the rate constants and activation parameters of the hydrolysis of ethanoic, butanoic, and hexanoic anhydrides in aqueous acetonitrile (a model acyl transfer reaction), we suggest that this result may be attributed to the balance between two opposing effects, namely, steric crowding and (cooperative) hydrophobic interactions between the anhydride and the cellulosic surface, whose lipophilicity has increased, due to its partial acylation. Four ethanoate-based mixed esters were synthesized by the reaction with a mixture of the two anhydrides; the ethanoate moiety predominated in all products. The DS is reproducible and the IL is easily recycled. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 134-143, 2010
Resumo:
The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO(3)) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO(3)(-) group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO(3))(TPPO)(2)]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.
Resumo:
Smart water metering technologies for residential buildings offer, in principle, great opportunities for sustainable urban water management. However, much of this potential is as yet unrealized. Despite that several ICT solutions have already been deployed aiming at optimum operations on the water utilities side (e.g. real time control for water networks, dynamic pump scheduling etc.), little work has been done to date on the consumer side. This paper presents a web-based platform targeting primarily the household end user. The platform enables consumers to monitor, on a real-time basis, the water demand of their household, providing feedback not only on the total water consumption and relevant costs but also on the efficiency (or otherwise) of specific indoor and outdoor uses. Targeting the reduction of consumption, the provided feedback is combined with notifications about possible leakages\bursts, and customised suggestions to improve the efficiency of existing household uses. It also enables various comparisons, with past consumption or even with that of similar households, aiming to motivate further the householder to become an active player in the water efficiency challenge. The issue of enhancing the platform’s functionality with energy timeseries is also discussed in view of recent advances in smart metering and the concept of “smart cities”. The paper presents a prototype of this web-based application and critically discusses first testing results and insights. It also presents the way in which the platform communicates with central databases, at the water utility level. It is suggested that such developments are closing the gap between technology availability and usefulness to end users and could help both the uptake of smart metering and awareness raising leading, potentially, to significant reductions of urban water consumption. The work has received funding from the European Union FP7 Programme through the iWIDGET Project, under grant agreement no318272.
Resumo:
O presente estudo avaliou a digestibilidade aparente da proteína e da energia de ingredientes (farelo de soja, farinha de peixe, farelo de trigo e milho) por juvenis de apaiari (Astronotus ocellatus) usando dois diferentes intervalos de coleta (30 min. e 12h). Os 160 juvenis de apaiari utilizados (22,37 ± 3,06 g de peso corporal) foram divididos em quatro tanques rede plásticos e cilíndricos, cada um colocado em um tanque de alimentação de 1.000 L. O experimento foi inteiramente casualizado em esquema fatorial 2 x 4 (2 intervalos de coleta de fezes e 4 ingredientes foram) com quatro repetições. Os testes estatísticos não detectaram efeito da interação entre o intervalo de coleta e tipo de ingrediente nos coeficientes de digestibilidade. O intervalo de coleta não afetou a digestibilidade da proteína e da energia. As características físicas das fezes dos juvenis de apaiari aparentemente as tornam menos sensíveis à perda de nutrientes por lixiviação, permitindo intervalos de coleta maiores. A digestibilidade da proteína dos ingredientes avaliados foi semelhante, mostrando que a digestibilidade aparente de ingredientes animais e vegetais por juvenis de apaiari é eficiente. Os coeficientes de digestibilidade da energia foram maiores para a farinha de peixe e o farelo de soja comparado a farelo de trigo e milho. Ingredientes ricos em carboidratos (farelo de trigo e milho) apresentaram os piores coeficientes de digestibilidade da energia e, portanto, não são usados eficientemente pelos juvenis de apaiari.
Resumo:
The castor bean crop (Ricinus communis L.) has acquired prestige due to industries interest in the oil quality and recently for new sources of energy demand. The experiment that served as basis for the data used in this study was conducted at the Lageado Experimental Farm, in Botucatu - SP, 2008. This study aimed to avaluate the crop viability through energy balance and energy efficiency since the implantation until biodiesel production using parameters of consumption in operational management for installation and maintenance of culture harvest and oil production. The soil management operations, sow and harvest consumed the total of 266.20 MJ ha(-1), gathering with the fertilizers, pesticides, fuels, lubricants, labor, seed and industrial processing totaled 56,808 MJ ha(-1) of energy inputs. The energy production was 72,814.00 MJ ha(-1). The industry still lacks studies thal would contribution data collection and more specific energy coefficients. The castor beans cultivation was considered efficient allowing again of 15983.44 MJ ha(-1) equivalent to about 415 liters of diesel oil.
Resumo:
Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.