994 resultados para Electronic absorption
Resumo:
We report a systematic study of the electronic transport properties of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14). The electrical resistivity, magnetoresistance, susceptibility, Hall effect and thermopower have been studied, All of the transport coefficients are dependent on the value of delta. The resistivity increases almost exponentially as delta increases. We relate this increase in rho to the creation of Ni2+ with square-planar coordination. We find that there is a distinct T-1.5-contribution to the resistivity over the whole temperature range. The thermopower is negative, as expected for systems with electrons as the carrier, but the Hall coefficient is positive. We have given a qualitative and quantitative explanation for the different quantities observed and their systematic variation with the stoichiometry delta.
Resumo:
The surfaces of laser ablated thin films of YBa2Cu3O7?? have been passivated with about 100 Å thick textured layer of Ca0.95Sr0.025Ba0.025Zr0.98Ta0.01Ti0.01O3. It is shown that this low loss dielectric material preserves the quality of the surface and also prolongs the aging process. The films (both passivated and as?deposited) have been studied for degradation on exposure to atmosphere and also on dipping directly in water. The technique of nonresonant microwave absorption is used to study the effects and extent of degradation in these films. © 1995 American Institute of Physics.
Resumo:
Time-dependent wavepacket propagation techniques have been used to calculate the absorption spectrum and the resonance Raman excitation profiles of the n-pi* transition in azobenzene. A comparison of both the calculated absorption spectrum and excitation profiles with experiment has been made. From an analysis of the data, it is concluded that the Raman intensities are mainly due to resonance from the n-pi* transition and not from the pre-resonance of the pi-pi* transition, as reported earlier. We find that the isomerization pathway is through the inversion mechanism rather than by rotation. This is the first direct spectroscopic evidence for the isomerization pathway in trans-azobenzene.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
Oxides of the general formula La2-2xSr2xCu1-xII,M(x)(IV)O(4) (M = Ti, Mn, Fe, or Ru), crystallizing in the tetragonal K,NIF, structure, have been synthesized. For M=Ti, only the x=0,5 member could be prepared, while for M=Mn and Fe, the composition range is 0
Resumo:
A detailed study of the layered manganite La1+xSr2-xMn2O7 has been performed, establishing that within the composition range 0.1 less than or equal to x less than or equal to 0.45 the phases crystallize in the I4/mmm space group. The evolution of structural parameters with x: in this composition range has been followed using a novel application of an existing program for the Rietveld analysis of powder diffraction data. The structure, a familiar intergrowth of rock-salt (La,Sr)O slabs and double perovskite (La,Sr)(2)Mn2O6 units, is characterized by a reluctance to deform the latter. This manifests as a ''pumping'' of the larger Sr-II ion into the 12-coordinate site of the structure as x is increased. We report these features of the structure as well as electrical transport and magnetic properties, in light of recent observations of giant, negative magnetoresistance in these systems.
Resumo:
3,6-Dibromo-N-ethylcarbazole (DBNEC) and its polymeric analogue poly-3,6-dibromovinylcarbazole (PDBVCz) were studied by transient absorption spectroscopy. The transient absorption spectrum of the 3,6-dibromo-N-ethylcarbazole radical cation and decay rate constants of radical cations of 3,6-dibromo-N-ethylcarbazole and its polymeric analogue are presented. In the case of unsubstituted carbazole, the ratio of the yield of radical cation of monomer to polymer is 2.0, whereas in the case of PDBVCz, under the same experimental conditions, the yield of the radical cation is an order of magnitude less in comparison with the monomer model compound DBNEC. This drastic difference in yield has been correlated to the difference in the conformational structure of the polymer as evidenced by nuclear magnetic resonance spectroscopy. (C) 1997 Elsevier Science S.A.
Resumo:
Fluorene and its derivatives are well-known organic semiconducting materials in the field of opto-electronic devices because of their charge transport properties. Three new organic semiconducting materials, namely, 2,2'-((9,9-butyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C4; 2,2'-((octyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C8; and 2,2'-((9,9-dodecayl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C12 with a benzothiazole-fluorene backbone, were synthesized and characterized for their photophysical properties. A phenomenon of concomitant polymorphism has been investigated in the first two derivatives (C4 and C8) and has been analyzed systematically in terms of the packing characteristics involving pi ... pi interactions. The conformational flexibility of the pi-conjugated 2,2'-(fluorene-2,7-diyl)bis(4,1 phenylene)bisbenzod]thiazole backbone coupled with orientational freedom of the terminal alkyl chains were found to be the key factors responsible for these polymorphic modifications. Attempts to grow suitable crystals for single crystal X-ray diffraction of compound C12 were unsuccessful.
Resumo:
Resonant microwave power absorption is examined for slabs exposed to TEM waves from both faces and for a slab placed on a reflecting support. Using the electric field distribution in the slab, the average power is obtained by integrating the spatially distributed power across the sample length. Due to constructive interference of the standing waves within the sample, the average power rises to a local maximum during a resonance. Irrespective of the material, resonances occur at integral values of L/lambda(s) when the slab is exposed to radiation from both faces and at L/lambda(s) = 0.5n-0.25 when placed on a reflecting support.
Resumo:
Electronic Exchanges are double-sided marketplaces that allows multiple buyers to trade with multiple sellers, with aggregation of demand and supply across the bids to maximize the revenue in the market. In this paper, we propose a new design approach for an one-shot exchange that collects bids from buyers and sellers and clears the market at the end of the bidding period. The main principle of the approach is to decouple the allocation from pricing. It is well known that it is impossible for an exchange with voluntary participation to be efficient and budget-balanced. Budget-balance is a mandatory requirement for an exchange to operate in profit. Our approach is to allocate the trade to maximize the reported values of the agents. The pricing is posed as payoff determination problem that distributes the total payoff fairly to all agents with budget-balance imposed as a constraint. We devise an arbitration scheme by axiomatic approach to solve the payoff determination problem using the added-value concept of game theory.
Resumo:
We present a comparative study of the spin states and electronic properties of La1-xSrxCoO3 and La2-xSrxLi0.5Co0.5O4 using X-ray absorption near-edge structure spectroscopy at both the O-K and Co-L-2.3 thresholds. In the La2-xSrxLi0.5Co0.5O4 system the CoO6 octahedra are isolated, the holes induced by Sr doping are trapped in the isolated Co(IV)O-6 octahedra, and a low-spin state is found for the Co ions, which does not change upon Sr doping. In the La1-xSrxCoO3 system, the interconnected CoO6 octahedra, with a 180degrees Co-O-Co bond angle, give rise to a transition from low-spin to intermediate-spin state with a ferromagnetic alignment of the Co spins. The double-exchange, ferromagnetic coupling between Co ions mediated by the 180degrees bond angle is responsible for suppressing the low spin-state. We find that the branching ratio of spectral intensities at the L-2 and L-3 thresholds in the Co-L-2.3 X-ray absorption spectra is sensitive to the spin state of the Co ions allowing its direct spectroscopic determination. (C) 2002 Published by Elsevier Science B.V.
Electronic structure of In1-xMnxAs studied by photoemission spectroscopy: Comparison with Ga1-xMnxAs
Resumo:
We have investigated the electronic structure of the p-type diluted magnetic semiconductor In1-xMnxAs by photoemission spectroscopy. The Mn 3d partial density of states is found to be basically similar to that of Ga1-xMnxAs. However, the impurity-band-like states near the top of the valence band have not been observed by angle-resolved photoemission spectroscopy unlike Ga1-xMnxAs. This difference would explain the difference in transport, magnetic and optical properties of In1-xMnxAs and Ga1-xMnxAs. The different electronic structures are attributed to the weaker Mn 3d-As 4p hybridization in In1-xMnxAs than in Ga1-xMnxAs.
Resumo:
While bonding between d(10) atoms and ions in molecular systems has been well studied, less attention has been paid to interactions between such seemingly closed shell species in extended inorganic solids. In this contribution, we present visualizations of the electronic structures of the delafossites ABO(2) (A = Cu, Ag, Au) with particular emphasis on the nature of d(10)-d(10) interactions in the close packed plane of the coinage metal ion. We find that on going from Cu to Ag to Au, the extent of bonding between A and A increases. However, the structures (in terms of distances) of these compounds are largely determined by the strongly ionic 13,11 0 interaction and for the larger B ions Sc, In and Y, the A atoms are sufficiently well-separated that A-A bonding is almost negligible. We also analyze some interesting differences between Ag and Au, including the larger A-O covalency of the Au. The trends in electronic structure suggest that the Ag and Au compounds are not good candidate transparent conducting oxides. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
We have investigated the electronic structure of ordered and disordered Sr2FeMoO6 using ab initio bandstructure methods. The effect of disorder was simulated within supercell calculations to realize several configurations with mis-site disorders. It is found that such disorder effects destroy the half-metallic ferromagnetic state of the ordered compound. It also leads to a substantial reduction of the magnetic moments at the Fe sites in the disordered configurations. Most interestingly, it is found for the disordered configurations that the magnetic coupling within the Fe sublattice as well as that within the Mo sublattice always remain ferromagnetic, while the two sublattices couple antiferromagnetically, in close analogy to the magnetic structure of the ordered compound, but,in contrast to recent suggestions.
Resumo:
Absorption due to immersion in aqueous media consisting of either saline or seawater or due to exposure to water vapor conditions and the attendant effect on the compressive properties of syntactic foam reinforced with E-glass fibers in the form of chopped strands were studied. Whereas the compressive strength decreased in samples exposed to water vapor, the saline or seawater immersed samples showed increase when compared to the dry sample. The decrease in strength in the vapor-exposed case is ascribed to higher absorption of water and to debonding and damaged features for interfaces. The enhancement of strength values for the samples immersed in saltish media is traced to the larger size of the chloride ion and resultant changes in the stress state around the fiber-bearing regions. Recourse to an analysis of scanning electron microscopic pictures of the compression-failed samples is taken to explain the observed trends.