997 resultados para Electric-field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a chiral nematic liquid crystal with a negative dielectric anisotropy, it is possible to switch between band-edge laser emission and random laser emission with an electric field. At low frequencies (1 kHz), random laser emission is observed as a result of scattering due to electro-hydrodynamic instabilities. However, band-edge laser emission is found to occur at higher frequencies (5 kHz), where the helix is stabilized due to dielectric coupling. These results demonstrate a method by which the linewidth of the laser source can be readily controlled externally (from 4 nm to 0.5 nm) using electric fields. © 2012 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smectic A liquid crystals, based upon molecular structures that consist of combined siloxane and mesogenic moieties, exhibit strong multiple scattering of light with and without the presence of an electric field. This paper demonstrates that when one adds a laser dye to these compounds it is possible to observe random laser emission under optical excitation, and that the output can be varied depending upon the scattering state that is induced by the electric field. Results are presented to show that the excitation threshold of a dynamic scattering state, consisting of chaotic motion due to electro-hydrodynamic instabilities, exhibits lower lasing excitation thresholds than the scattering states that exist in the absence of an applied electric field. However, the lowest threshold is observed for a dynamic scattering state that does not have the largest scattering strength but which occurs when there is optimization of the combined light absorption and scattering properties. © 2012 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers. © 2011 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analytical model for the electric field and the breakdown voltage (BV) of an unbalanced superjunction (SJ) device is presented in this paper. The analytical technique uses a superposition approach treating the asymmetric charge in the pillars as an excess charge component superimposed on a balanced charge component. The proposed double-exponentialmodel is able to accurately predict the electric field and the BV for unbalanced SJ devices in both punch through and non punch through conditions. The model is also reasonably accurate at extremely high levels of charge imbalance when the devices behave similarly to a PiN diode or to a high-conductance layer. The analytical model is compared against numerical simulations of charge unbalanced SJ devices and against experimental results. © 2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ultrasmall tunable microlens with a diameter of 1.5 μm is fabricated using nematic liquid crystals (electrically tunable medium) and vertically aligned carbon nanofibers (CNFs, electrodes). Individual CNFs are grown at the center of circular dielectric regions. This allows the CNFs to produce a more Gaussian electric field profile and hence more uniformity in lens array switching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On page OP 175, U. Steiner and co-workers destabilise polymer trilayer films using an electric field to generate separated micrometre-sized core-shell pillars, which are further modified by selective polymer dissolution to yield polymer core columns surrounded by a rim and micro-volcano rim structures. When coated with gold and decorated with Raman active probes, all three structure types give rise to substantial enhancement in surface-enhanced Raman scattering (SERS). Since this SERS enhancement arises from each of the isolated structures in the array, these surface patterns are an ideal platform for multiplexed SERS detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comprehensive theoretical study of the Trench Insulated Gate Bipolar Transistors (TIGBT). Specific physical and geometrical effects, such as the accumulation layer injection, increased channel density, increased channel charge and transversal electric field modulation are discussed. The potential advantages of the Trench IGBT over its conventional planar variant are highlighted. It is concluded that the Trench IGBT is one of the most promising structures in the area of high voltage MOS-controllable switching devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixtures of two proprietary low molar mass organosiloxane liquid crystals were studied in order to improve their alignment and optimize their electro-optic properties for telecommunication applications. Over a certain concentration range, mixtures exhibited an isotropic-chiral smectic A-chiral smectic C (Iso-SmA*-SmC*) phase sequence leading to exceptionally good alignment. At room temperature, the spontaneous polarization of these samples was reduced from 225 nC cm -2 in the pure SmC* liquid crystal to as low as 75 nC cm -2 in the mixture. Within this concentration range, the ferroelectric tilt angle could be varied between 35° and 15°, while the rise time decreased by 69.4%. The rise times were < 45 μs for moderate electric fields of ± 10 V μm -1 in the SmC* phase and ∼ 4 μs, independent of electric field, in the SmA* phase. At λ = 1550 nm, these mixtures exhibited very large extinction ratios of {\sim} 60 dB for binary switching in the SmC* phase and ∼ 55 dB continuous variable attenuation in the SmA* phase. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp 2 hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13 of electric-field effect. The Hall mobility is ∼40 cm 2/Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size ∼10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes. © 2012 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This letter presents a novel lateral superjunction lateral insulated-gate bipolar transistor (LIGBT) in partial silicon-on-insulator (SOI) technology in 0.18-μm partial-SOI (PSOI) high-voltage (HV) process. For an n-type superjunction LIGBT, the p-layer in the superjunction drift region not only helps in achieving uniform electric field distribution but also contributes to the on-state current. The superjunction LIGBT successfully achieves a breakdown voltage (BV) of 210 V with an R dson of 765 mΩ ̇ mm 2. It exhibits half the value of specific on-state resistance R dson and three times higher saturation current (I dsat) for the same BV, compared to a comparable lateral superjunction laterally diffused metal-oxide-semiconductor fabricated in the same technology. It also performs well in higher temperature dc operation with 38.8% increase in R dson at 175°C, compared to the room temperature without any degradation in latch-up performance. To realize this device, it only requires one additional mask layer into X-FAB 0.18-μm PSOI HV process. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparison between the superjunction LIGBT and the LDMOSFET in partial silicon-on-insulator (PSOI) technology in 0.18μm PSOI HV process. The superjunction drift region helps in achieving uniform electric field distribution in both structures but also contributes to the on-state current in the LIGBT. The superjunction LIGBT successfully achieves breakdown voltage (BV) of 210V with Rdson of 765mΩ.mm2. It exhibits reduced specific on-state resistance Rdson and higher saturation current (Idsat) for the same BV compared to a compatible lateral superjunction LDMOS in the same technology. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets can also act as efficient magnetic shields. The magnetic screening properties under an axial DC magnetic field are characterized at several temperatures below the liquid nitrogen temperature (77 K). Two main shielding properties are studied and compared with those of Bi-2223, a material that has been considered in the past for bulk magnetic shields. The first property is related to the maximum magnetic flux density that can be screened, Blim; it is defined as the applied magnetic flux density below which the field attenuation measured at the centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to 1 T at T = 10 K. This value largely exceeds the Blim value measured at the same temperature on similar tubes of Bi-2223. The second shielding property that is characterized is the dependence of Blim with respect to variations of the sweep rate of the applied field, dBapp/dt. This dependence is interpreted in terms of the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this E(J) characteristics for Bi-2212. The characterization of the magnetic field relaxation involves very small values of the electric field. This gives us the opportunity to experimentally determine the E(J) law in an unexplored region of small electric fields. Combining these results with transport and AC shielding measurements, we construct a piecewise E(J) law that spans over 8 orders of magnitude of the electric field.