959 resultados para EVAPORATION
Resumo:
High-spin Level structure of Tl-188 has been studied via Gd-157 (Cl-35,4n) fusion-evaporation reaction at beam energy of 170MeV. A rotational band built on the pi h(9/2) circle times nu i(13/2) configuration with oblate deformation has been established. Spin values have been proposed to the pi h(9/2) circle times nu i(13/2) oblate band based on the similarities between the oblate band of Tl-188 and those in odd-odd Tl190-200. With the spin assignments, the low-spin signature inversion has been revealed for the pi h(9/2) circle times nu i(13/2) oblate band of Tl-188. The low-spin signature inversion can be interpreted qualitatively in the framework of the quasi-particles plus rotor model including a J dependent p-n residual interaction.
Resumo:
The beta(+)/EC decay of doubly odd Ir-176 has been investigated using Nd-146(Cl-35, 5n gamma)Ir-176 heavy ion fusion evaporation reaction at 210MeV bombarding energy. With the aid of a helium-jet recoil fast tape transport system, the reaction products were transported to a low-background location for measurements. Based on the data analysis, the previously published gamma rays in Ir-176 decay were proved, moreover, 3 new levels and 10 new gamma rays were assigned to Ir-176 decay. The new level scheme of Os-176 with low excitation energy has been established. The time spectra of typical gamma rays clearly indicate a long-lived low-spin isomer in Ir-176 nuclide.
Resumo:
A master equation is constructed to treat the nucleon transfer process in heavy ion fusion reactions to form superheavy nucleus. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are thus time dependent. The calculated evaporation residue cross-sections for both cold and hot fusion are in good agreement with the known experimental data.
Resumo:
We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.
Resumo:
Within the framework of a dinuclear system model, a new master equation is constructed and solved, which includes the relative distance of nuclei as a new dynamical variable in addition to the mass asymmetry variable so that the nucleon transfer, which leads to fusion and the evolution of the relative distance, which leads to quasifission (QF) are treated simultaneously in a consistent way. The QF mass yields and evaporation residual cross sections to produce superheavy nuclei are systematically investigated under this framework. The results fit the experimental data well. It is shown that the Kramers formula gives results of QF, which agree with those by our diffusion treatment, only if the QF barrier is high enough. Otherwise some large discrepancies occur.
Resumo:
The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca-48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.
Experimental study of the U-238(S-36,3-5n)(269-271)Hs reaction leading to the observation of (270)Hs
Resumo:
The deformed doubly magic nucleus (270)Hs has so far only been observed as the four-neutron (4n) evaporation residue of the reaction Mg-26+Cm-248, where a maximum cross section of 3 pb was measured. Theoretical studies on the formation of (270)Hs in the 4n evaporation channel of fusion reactions with different entrance channel asymmetry in the framework of a two-parameter Smoluchowski equation predict that the reactions Ca-48+Ra-226 and S-36+U-238 result in higher cross sections due to lower reaction Q values, in contrast to simple arguments based on the reaction asymmetry, which predict opposite trends. Calculations using HIVAP predict cross sections for the reaction S-36+U-238 that are similar to those of the Mg-26+Cm-248 reaction. Here, we report on the first measurement of evaporation residues formed in the complete nuclear fusion reaction S-36+U-238 and the observation of (270)Hs, which is produced in the 4n evaporation channel, with a measured cross section of 0.8(-0.7)(+2.6) pb at 51-MeV excitation energy. The one-event cross-section limits (68% confidence level) for the 3n, 4n, and 5n evaporation channels at 39-MeV excitation energy are 2.9 pb, while the cross-section limits of the 3n and 5n channel at 51 MeV are 1.5 pb. This is significantly lower than the 5n cross section of the Mg-26+Cm-248 reaction at similar excitation energy.
Resumo:
Within the framework of the dinuclear system (DNS) model, the production cross sections of superheavy nuclei Hs (Z=108) and Z=112 combined with different reaction systems are analyzed systematically. It is found that the mass asymmetries and the reaction Q values of the projectile target combinations play a very important role on the formation cross sections of the evaporation residues. Both methods to obtain the fusion probability by nucleon transfer by solving a set of microscopically derived master equations along the mass asymmetry degree of freedom (ID) and distinguishing protons and neutrons of fragments (2D) are compared with each other and also with the available experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The proton-rich isotope Ho-148 was produced via the fusion-evaporation reaction Mo-92 (Ni-58, 3p1n). The beta-delayed proton decay of Ho-146 was studied by proton-gamma coincidence measurements using a He-jet tape transport system. The gamma-transitions in Tb-145 following the proton emissions were observed, and the beta-delayed proton branching ratios to the final states in the grand-daughter nucleus Tb-145 were determined. According to the relative branching ratios, the ground-state spin of Ho-146 has been proposed and the possible configuration discussed.
Resumo:
The neutron deficient nuclide Ir-175 was produced by irradiation of Nd-146 with 210 MeV Cl-35 via a fusion-evaporation reaction channel. The reaction products were transported to a low-background location using a helium-jet recoil fast-moving tape-transport system for measurement. The experimental devices and data analysis method are introduced. Based on the decay-curve fitting of the beta-delayed gamma ray from Ir-175, realized by the least-square method, a new long-lived isomeric state of Ir-175 is proposed and briefly discussed.
Resumo:
We have studied the excitation and dissociation processes of the molecule W(CO)(6) in collisions with low kinetic energy (3 keV) protons, monocharged fluorine, and chlorine ions using double charge transfer spectroscopy. By analyzing the kinetic energy loss of the projectile anions, we measured the excitation energy distribution of the produced transient dications W(CO)(6)(2+). By coincidence measurements between the anions and the stable or fragments of W(CO)(6)(2+), we determined the energy distribution for each dissociation channel. Based on the experimental data, the emission of the first CO was tentatively attributed to a nonstatistical direct dissociation process and the emission of the second or more CO ligands was attributed to the statistical dissociation processes. The dissociation energies for the successive breaking of the W-CO bond were estimated using a cascade model. The ratio between charge separation and evaporation (by the loss of CO+ and CO, respectively) channels was estimated to be 6% in the case of Cl+ impact. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3523347]
Resumo:
In the experiment of nuclear reaction, it is important to measure the mass, charge, energy and emitted direction of particles. For multiparameter measurement, we must use a detector or a group of detectors which can give the time, energy, and position information. The Large Area position sensitive Ionization Chamber(LAIC) is one of the eight experiment terminals of HIRFL. It is built for researching nuclear reactions from low energy to intermediate energy. It is an excellent equipment for energy measurements and atomic number identification of emitted fragments in this energy region. It is also designed to give the time and position information of the emitted fragments by itself. Obviously, an IC can not supply a good timing signal. Moreover, the mechanical installation is different from the original design by some other reasons. In this case, it is not enough to obtain the correct direction information of the emitted fragments. To obtain good timing signals and the correct direction information, some modifications must be made. It is well known that a PPAC can give us excellent timing signals. It also can be easily built as a position sensitive detector. For this reason, a specially designed PPAC is installed in the entrance of the LAIC. For the different purposes, two types of PPACs were designed and tested. Both are OCTPSACs (OCTunit one dimension Position Sensitive Avalanche Counter). In this paper, both OCTPSACs will be introduced. Based on the requirements of the LAIC, the OCTPSACs consist of eight position sensitive PPACs. Each PPAC has an anode and a cathode. In both cases, the sizes are same. But different type of cathodes are used. In one type of OCTPSAC, its cathode is made of wire plane. It consists of gold-plated tungsten wires with the diameter of 20μm, spaced 0.5 mm apart from each other. The anode is a mylar foil which was evaporated by gold layer with the thickness of 50μg/cm~2 mounted on a printed plate in the shape of rectangle. the thickness of mylar foil is 1.5μm. The gap between anode and cathode is 3mm. The performance of the OCTPSAC has been tested by using a ~(252)Cf source in flowing isobutylene gas at the pressure of 3.4mb. The intrinsic time resolution of 289ps and position resolution of 2 mm have been obtained. In another type of OCTPSAC, the cathode is made of mylar foil, which is composed of gold strip by vacuume evaporation method with a special mask on the mylar foil. The thickness and the width of the gold strip is 50μg/cm~2 and 1.7mm. The strips are spaced 0.3 mm apart from each other. The anode is the same as the former type. We have obtained the time resolution of 296ps and position resolution of 2mm by using ~(241)Am-a source when the gas pressure is 6 mb and high voltage is 600V. The working gas is heptane
Resumo:
Pyrimethanil myristic salt was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from T = (79 to 360) K. The melting point, molar enthalpy, Delta(fus)H(m) and entropy, Delta(fus)S(m), of fusion of this compound were determined to be (321.84 +/- 0.05) K, (56.53 +/- 0.03) kJ . mol(-1) and (175.64 +/- 0.05) J . mol(-1) . K-1, respectively. The purity of the compound was calculated to be 98.99 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature, T = 298.15 K, were calculated based on the heat capacity measurements in the temperature ranges from T = (80 to 360) K. The TG-DTG results demonstrate that the mass loss of the sample takes place in one step with the maximum rate at T = 500 K, which was caused by evaporation of the sample. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An on-line sample introduction technique in capillary gas chromatograph (CGC) for the analysis of high-pressure gas-liquid mixtures has been designed and evaluated. A sample loop of 0.05 muL and a washing solvent loop of 0.5 muL are mounted on a 10-port switching valve, which serves as the injection valve. A capillary resistor was connected to the vent of sample loop in order to maintain the pressure of the sample. Both the sample and the washing solvent are transferred into the split-injection port through a narrow bore fused silica capillary inserted into the injection liner through a septum. The volume of the liner is used both as the pressure-release damper and evaporation chamber of the sample. On-line analysis of both reactants and resultants in ethylene olimer reaction mixture at 5 MPa was carried out, which demonstrated the applicability of the technique. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C-p,C-m (J K-1 mol(-1)) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K less than or equal to T less than or equal to 333.297 K, C-p,C-m = 144.27 + 77.046X + 3.5171X(2) + 10.925X(3) + 11.224X(4), where X = (T - 206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K less than or equal to T less than or equal to 378.785 K, C-p,C-m = 325.79 + 8.9696X - 1.6073X(2) - 1.5145 X-3, where X = (T - 366.095)/12.690. A fusion transition at T = 348.02 K was found from the C-p-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol(-1) and 76.58 J mol(-1) K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H-T - H-298.15) and (S-T - S-298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3 +/- 1.4 kJ mol(-1). (C) 2003 Elsevier B.V. All rights reserved.