944 resultados para ES-SAGD. pressure drop. heavy oil. reservoir modeling and simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to reservoirs complexity and significantly large reserves, heavy oil recovery has become one of the major oil industry challenges. Thus, thermal methods have been widely used as a strategic method to improve heavy oil recovery. These methods improve oil displacement through viscosity reduction, enabling oil production in fields which are not considered commercial by conventional recovery methods. Among the thermal processes, steam flooding is the most used today. One consequence in this process is gravity segregation, given by difference between reservoir and injected fluids density. This phenomenon may be influenced by the presence of reservoir heterogeneities. Since most of the studies are carried out in homogeneous reservoirs, more detailed studies of heterogeneities effects in the reservoirs during steam flooding are necessary, since most oil reservoirs are heterogeneous. This paper presents a study of reservoir heterogeneities and their influence in gravity segregation during steam flooding process. In this study some heterogeneous reservoirs with physical characteristics similar those found in the Brazilian Northeast Basin were analyzed. To carry out the simulations, it was used the commercial simulator STARS by CMG (Computer Modeling Group) - version 2007.11. Heterogeneities were modeled with lower permeability layers. Results showed that the presence of low permeability barriers can improve the oil recovery, and reduce the effects of gravity segregation, depending on the location of heterogeneities. The presence of these barriers have also increased the recovered fraction even with the reduction of injected steam rate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waterflooding is a technique largely applied in the oil industry. The injected water displaces oil to the producer wells and avoid reservoir pressure decline. However, suspended particles in the injected water may cause plugging of pore throats causing formation damage (permeability reduction) and injectivity decline during waterflooding. When injectivity decline occurs it is necessary to increase the injection pressure in order to maintain water flow injection. Therefore, a reliable prediction of injectivity decline is essential in waterflooding projects. In this dissertation, a simulator based on the traditional porous medium filtration model (including deep bed filtration and external filter cake formation) was developed and applied to predict injectivity decline in perforated wells (this prediction was made from history data). Experimental modeling and injectivity decline in open-hole wells is also discussed. The injectivity of modeling showed good agreement with field data, which can be used to support plan stimulation injection wells

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of thermal methods, to increase the recovery of heavy oil in mature fields through drainage with multilateral and horizontal wells, has been thoroughly studied, theorically, experimentally, testing new tools and methods. The continuous injection of steam, through a steam injector well and a horizontal producer well in order to improve horizontal sweep of the fluid reservoir, it is an efficient method. Starting from an heterogeneous model, geologically characterized, modeling geostatistics, set history and identification of the best path of permeability, with seismic 3D, has been dubbed a studying model. It was studied horizontal wells in various directions in relation to the steam and the channel of higher permeability, in eight different depths. Into in the same area were studied, the sensitivity of the trajectories of horizontal wells, according to the depth of navigation. With the purpose of obtaining the highest output of oil to a particular flow, quality, temperature and time for the injection of steam. The wells studied showed a significant improvement in the cumulative oil recovery in one of the paths by promoting an alternative to application in mature fields or under development fields with heavy oil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly 3 x 1011 m3 of medium and light oils will remain in reservoirs worldwide after conventional recovery methods have been exhausted and much of this volume would be recovered by Enhanced Oil Recovery (EOR) methods. The in-situ combustion (ISC) is an EOR method in which an oxygen-containing gas is injected into a reservoir where it reacts with the crude oil to create a high-temperature combustion front that is propagated through the reservoir. The High Pressure Air Injection (HPAI) method is a particular denomination of the air injection process applied in light oil reservoirs, for which the combustion reactions are dominant between 150 and 300°C and the generation of flue gas is the main factor to the oil displacement. A simulation model of a homogeneous reservoir was built to study, which was initially undergone to primary production, for 3 years, next by a waterflooding process for 21 more years. At this point, with the mature condition established into the reservoir, three variations of this model were selected, according to the recovery factors (RF) reached, for study the in-situ combustion (HPAI) technique. Next to this, a sensitivity analysis on the RF of characteristic operational parameters of the method was carried out: air injection rate per well, oxygen concentration into the injected gas, patterns of air injection and wells perforations configuration. This analysis, for 10 more years of production time, was performed with assistance of the central composite design. The reservoir behavior and the impacts of chemical reactions parameters and of reservoir particularities on the RF were also evaluated. An economic analysis and a study to maximize the RF of the process were also carried out. The simulation runs were performed in the simulator of thermal processes in reservoirs STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modelling Group). The results showed the incremental RF were small and the net present value (NPV) is affected by high initial investments to compress the air. It was noticed that the adoption of high oxygen concentration into the injected gas and of the five spot pattern tends to improve the RF, and the wells perforations configuration has more influence with the increase of the oil thickness. Simulated cases relating to the reservoir particularities showed that smaller residual oil saturations to gas lead to greater RF and the presence of heterogeneities results in important variations on the RF and on the production curves

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of hydrocarbon reserves existing in the world are formed by heavy oils (°API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steamflooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. This works discusses the use of carbon dioxide, nitrogen, methane and water as an alternative fluid to the steam. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Brazilian Potiguar Basin. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that waterflood after steam injection interruption achieved the highest net cumulative oil compared to other fluids injection. Moreover, it was observed that steam and alternative fluids, co-injected and alternately, did not present increase on profitability project compared with steamflooding

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study the behaviour of conventional spouted beds during water evaporation and to analyze the pressure fluctuations at the maximum water evaporative capacity for different bed heights and air flow rates. The results showed that spout pressure drop could not indicate the proximity of maximum evaporative capacity; however this condition is denoted by a minimum in fountain height. The standard deviation and amplitude of the pressure fluctuations also showed a minimum point at the maximum water evaporation capacity. The frequency domain analysis of pressure fluctuations revealed that the dry bed has a dominant frequency varying from 6 to 8.2 Hz and that the peak of dominant frequency tends to disappear with the increase in water feed rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiac limb of the baroreflex loop was studied in the saltwater crocodile Crocodylus porosus, The classical pharmacological methodology using phenylephrine and sodium nitroprusside was used to trigger blood pressure changes, and the resulting alterations in heart rate were analysed quantitatively using a logistic function. Interindividual differences in resting heart rates and blood pressures were observed, but all seven animals displayed clear baroreflex responses. Atropine and sotalol greatly attenuated the response. A maximal baroreflex gain of 7.2 beats min(-1) kPa(-1) was found at a mean aortic pressure of 6.1 kPa, indicating the active role of the baroreflex in a wide pressure range encompassing hypotensive and hypertensive states. At the lowest mean aortic pressures (5.0 kPa), the synergistic role of the pulmonary-to-systemic shunt in buffering the blood pressure drop also contributes to blood pressure regulation, Pulse pressure showed a better correlation,vith heart rate and also a higher gain than mean aortic, systolic or diastolic pressures, and this is taken as an indicator of the existence of a differential control element working simultaneously with a linear proportional element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-pressure homogenization is a key unit operation used to disrupt cells containing intracellular bioproducts. Modeling and optimization of this unit are restrained by a lack of information on the flow conditions within a homogenizer value. A numerical investigation of the impinging radial jet within a homogenizer value is presented. Results for a laminar and turbulent (k-epsilon turbulent model) jet are obtained using the PHOENICS finite-volume code. Experimental measurement of the stagnation region width and correlation of the cell disruption efficiency with jet stagnation pressure both indicate that the impinging jet in the homogenizer system examined is likely to be laminar under normal operating conditions. Correlation of disruption data with laminar stagnation pressure provides a better description of experimental variability than existing correlations using total pressure drop or the grouping 1/Y(2)h(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta pesquisa foi analisado o comportamento térmico e higrométrico em diferentes locais da Regional Praia do Canto no município de Vitória (ES) tanto no período chuvoso quanto no seco por meio da técnica de transecto móvel. A análise confirmou que as mudanças de uso e cobertura da terra associado com as características do relevo influenciam diretamente as variáveis meteorológicas, neste caso a temperatura do ar e umidade relativa do ar. A análise das condições médias de temperatura do ar e umidade relativa do ar permitiu observar dois núcleos aquecidos um ao norte e outro ao sul na área em estudo. Às 15h, tanto no verão como no inverno, a temperatura do ar atingiu o valor máximo e as taxas de umidade relativa, o seu valor mínimo. No verão e inverno, as áreas mais aquecidas ficaram bem definidas, áreas correspondentes aos núcleos aquecidos. As maiores influências do tecido urbano nas variáveis meteorológicas foram verificadas sob atuação da Alta Subtropical do Atlântico Sul. A maritimidade têm um peso importante no comportamento topoclimático urbano, sobre tudo na parte da manhã e da tarde. Na porção centro-leste da área em estudo observou-se até 3ºC a menos nos períodos vespertinos em relação aos pontos localizados na porção norte e sul. Os pontos à centroleste sofrem influência direta dos efeitos da maritimidade e dos arranjos dos prédios que formam sombreamento (Cânions Urbanos), fato que dificulta a formação de núcleos aquecidos durante o dia sobre esta porção. Foram observadas nos dois períodos, tanto no período chuvoso (verão) como também, no período seco (inverno), elevado gradiente térmico, estes localizadas onde há intenso fluxo de veículos, e também nas áreas de construção mais verticalizadas. A intensidade do gradiente térmico é maior sobre a atuação da Alta Subtropical do Atlântico Sul. Às 09 horas, são registrados os maiores gradientes térmicos para os dois períodos analisados. A umidade relativa do ar mantevese elevada durante os dois campos, tanto no verão quanto inverno. Os menores valores de umidade foram registrados em pontos que compõem o núcleo aquecido verificado na parte norte da área em estudo. Em virtude do comportamento das variáveis observadas foram identificadas três unidades Topoclimáticas Urbanas na Regional Praia do Canto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Geológica (Georrecursos)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.