901 resultados para EPITHELIAL MORPHOGENESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticancer therapies currently used in the clinic often can neither eradicate the tumor nor prevent disease recurrence due to tumor resistance. In this study, we showed that chemoresistance to pemetrexed, a multi-target anti-folate (MTA) chemotherapeutic agent for non-small cell lung cancer (NSCLC), is associated with a stem cell-like phenotype characterized by an enriched stem cell gene signature, augmented aldehyde dehydrogenase activity and greater clonogenic potential. Mechanistically, chemoresistance to MTA requires activation of epithelial-to-mesenchymal transition (EMT) pathway in that an experimentally induced EMT per se promotes chemoresistance in NSCLC and inhibition of EMT signaling by kaempferol renders the otherwise chemoresistant cancer cells susceptible to MTA. Relevant to the clinical setting, human primary NSCLC cells with an elevated EMT signaling feature a significantly enhanced potential to resist MTA, whereas concomitant administration of kaempferol abrogates MTA chemoresistance, regardless of whether it is due to an intrinsic or induced activation of the EMT pathway. Collectively, our findings reveal that a bona fide activation of EMT pathway is required and sufficient for chemoresistance to MTA and that kaempferol potently regresses this chemotherapy refractory phenotype, highlighting the potential of EMT pathway inhibition to enhance chemotherapeutic response of lung cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Rhinoviruses (RV) replicate in both upper and lower airway epithelial cells. We evaluated the possibility of using nasal epithelial cells (NEC) as surrogate of bronchial epithelial cells (BEC) for RV pathogenesis cell culture studies. METHODS We used primary paired NEC and BEC cultures established from healthy subjects and compared the replication of RV belonging to the major (RV16) and minor (RV1B) group, and the cellular antiviral and proinflammatory cytokine responses towards these viruses. We related antiviral and pro-inflammatory responses of NEC isolated from CF and COPD patients with those of BEC. RESULTS RV16 replication and major group surface receptor (ICAM-1) expression were higher in healthy NEC compared with BEC (P < 0.05); RV1B replication and minor group surface receptor (LDLR) expression were similar. Healthy NEC and BEC produced similar levels of IFN-β and IFN-λ2/3 upon RV infection or after simulation with poly(IC). IL-8 production was similar between healthy NEC and BEC. IL-6 release at baseline (P < 0.01) and upon infection with RV16 (P < 0.05) and poly(IC) stimulation (P < 0.05) was higher in NEC. RV1B viral load in NEC was related to RV1B viral load in BEC (r = 0.49, P = 0.01). There was a good correlation of IFN levels between NEC and BEC (r = 0.66, P = 0.0004 after RV1B infection). IL-8 production in NEC was related to IL-8 production in BEC (r = 0.48, P = 0.02 after RV1B infection). CONCLUSION NEC are a suitable alternative cellular system to BEC to study the pathophysiology of RV infections and particularly to investigate IFN responses induced by RV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelium has been recognized as a potential entry site of immune cells into the central nervous system during immunosurveillance and neuroinflammation. The location of the choroid plexus impedes in vivo analysis of immune cell trafficking across the BCSFB. Thus, research on cellular and molecular mechanisms of immune cell migration across the BCSFB is largely limited to in vitro models. In addition to forming contact-inhibited epithelial monolayers that express adhesion molecules, the optimal in vitro model must establish a tight permeability barrier as this influences immune cell diapedesis. METHODS We compared cell line models of the mouse BCSFB derived from the Immortomouse(®) and the ECPC4 line to primary mouse choroid plexus epithelial cell (pmCPEC) cultures for their ability to establish differentiated and tight in vitro models of the BCSFB. RESULTS We found that inducible cell line models established from the Immortomouse(®) or the ECPC4 tumor cell line did not express characteristic epithelial proteins such as cytokeratin and E-cadherin and failed to reproducibly establish contact-inhibited epithelial monolayers that formed a tight permeability barrier. In contrast, cultures of highly-purified pmCPECs expressed cytokeratin and displayed mature BCSFB characteristic junctional complexes as visualized by the junctional localization of E-cadherin, β-catenin and claudins-1, -2, -3 and -11. pmCPECs formed a tight barrier with low permeability and high electrical resistance. When grown in inverted filter cultures, pmCPECs were suitable to study T cell migration from the basolateral to the apical side of the BCSFB, thus correctly modelling in vivo migration of immune cells from the blood to the CSF. CONCLUSIONS Our study excludes inducible and tumor cell line mouse models as suitable to study immune functions of the BCSFB in vitro. Rather, we introduce here an in vitro inverted filter model of the primary mouse BCSFB suited to study the cellular and molecular mechanisms mediating immune cell migration across the BCSFB during immunosurveillance and neuroinflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous work has shown that localised activity of the cell-wall-loosening protein expansin is sufficient to induce primordia on the apical meristem of tomato, consistent with the hypothesis that tissue expansion plays a key role in leaf initiation. In this paper we describe the earliest morphogenic events visible on the surface of the apical meristem of tomato (Lycopersicon esculentum Mill.) following treatment with expansin and report on the spectrum of final structures formed. Our observations are consistent with a proposed primary function of expansin effecting morphogenesis via altered biophysical stress patterns in the meristem. The primordia induced by expansin do not complete the full program of leaf development. We present data indicating that one reason for this might be the inability of exogenous expansin to mimic the endogenous pattern of expansin activity in the meristem. These data provide the first detailed analysis at the cellular level of expansin action on living tissue, the first description of the spectrum of structures induced by expansin on the apical meristem, and give an insight into a potentially fundamental mechanism in plant development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in several cancers of epithelial origin, including those of breast, pancreas, lung, ovary, and colon. Functions of MUC1 include protection of mucosal epithelium, modulation of cellular adhesion, and signal transduction. Aberrantly increased expression of MUC1 in cancer cells promotes tumor progression through adaptation of these functions. Some regulatory elements participating in MUC1 transcription have been described, but the mechanisms responsible for overexpression are largely unknown. A region of MUC1 5′ flanking sequence containing two conserved potential cytokine response elements, an NFκB site at −589/−580 and a STAT binding element (SBE) at −503/−495, has been implicated in high level expression in breast and pancreatic cancer cell lines. Persistent stimulation by proinflammatory cytokines may contribute to increased MUC1 transcription by tumor cells. ^ T47D breast cancer cells and normal human mammary epithelial cells (HMEC) were used to determine the roles of the κB site and SBE in basal and stimulated expression of MUC1. Treatment of T47D cells and HMEC with interferon-γ (IFNγ) alone enhanced MUC1 expression at the level of transcription, and the effect of IFNγ was further stimulated by tumor necrosis factor-α (TNFα). MUC1 responsiveness to these cytokines was modest in T47D cells but clearly evident in HMEC. Transient transfection of T47D cells with mutant MUC1 promoter constructs revealed that the κB site at −589/−580 and the SBE at −503/−495 and were required for cooperative stimulation by TNFα and IFNγ. Electrophoretic mobility shift assays (EMSA) revealed that the synergy was mediated not by cooperative binding of transcription factors but by the independent actions of STAT1α and NFκB p65 on their respective binding sites. Independent mutations in the κB site and SBE abrogated cytokine responsiveness and reduced basal MUC1 promoter activity by 45–50%. However, only the κB site appeared to be constitutively activated in T47D cells, in part by NFκB p65. These findings implicate two cytokine response elements in the 5 ′ flanking region of MUC1, specifically a κB site and a STAT binding element, in overexpression of MUC1 in breast cancer cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoids, important modulators of squamous epithelial differentiation and proliferation, are effective in the treatment and prevention of squamous epithelial cancers, including squamous cell carcinomas (SCCs) of the skin. However, the mechanism is not well understood. Retinoids exert their effects primarily through two nuclear receptor families, retinoic acid receptors (RARα, β and γ) and retinoid X receptors (RXR(α, β and γ), ligand-dependent DNA-binding transcription factors that are members of the steroid hormone receptor superfamily. Retinoid receptor loss has been correlated with squamous epithelial malignancy. This has lead to the hypothesis that reduced RARγ expression and the resulting suppression of retinoid signaling contributes to squamous epithelial malignancy. To test this hypothesis, I attempted to reduce or abolish expression of RARγ, the predominant RAR in squamous epithelia, in several nontumorigenic human squamous epithelial cell lines. The most useful of these cell lines has been SqCCY1, the human head and neck squamous cell carcinoma cell line, along with several subclones stably transfected with RARγ sense and antisense expression constructs. By several criteria, we observed an overall suppression of squamous differentiation in RARγ sense transfectants and an enhancement in RARγ antisense transfectants, relative to parental SqCCY1 cells. We also observed that both sense and antisense cells could form tumors in athymic mice in vivo, while parental SqCCY1 cells could not. Although these results appear contradictory, several conclusions can be drawn. First, loss of RARγ contributes to squamous epithelial tumorigenesis. Second, overexpression of RARγ leads to tumor formation, suppressing differentiation and promoting proliferation, possibly due to a competitive inhibition of limiting concentrations of RXRα, a common heterodimeric partner for many nuclear receptors in addition to RARs, representing a mechanism for RARγ to modulate squamous epithelial homeostasis. The cause for tumorigenesis in the two conditions is likely due to different mechanisms/roles of RARγ in the cell, with the former as a retinoid signaling regulator; and the latter as an RXRα concentration modulator. Finally, High level of RARγ expression sensitizes cells to environmental RA, enhancing RARγ/RXRα-mediated RA signaling. Therefore, RA should be used in skin lesions with suppressed RARγ expression levels, not in skin lesions with overexpressed RARγ levels. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcinomas that arise from the ovarian surface epithelium represent a great challenge in gynecologic oncology. Although the prognosis of ovarian cancer is influenced by many factors capable of predicting clinical outcome, including tumor stage, pathological grade, and amount of residual disease following primary surgery, the biological aspects of ovarian cancer are not completely understood, thus implying that there may be other predictive indicators that could be used independently or in conjunction with these factors to provide a clearer clinical picture. The identification of additional markers with biological relevance is desirable. To identify disease-associated peptides, a phage display random peptide library was used to screen immunoglobulins derived from a patient with ovarian cancer. One peptide was markedly enriched following three rounds of affinity selection. The presence of autoantibodies against the peptide was examined in a panel of ovarian cancer patients. Stage IV patients exhibited a high percentage of positive reactivity (59%). This was in contrast to stage III patients, who only displayed 7% positive reactivity. Antibodies against the peptide were affinity purified, and heat-shock protein 90 (Hsp90) was identified as the corresponding autoantigen. The expression profile of the identified antigen was determined. Hsp90 was expressed in all sections examined regardless of degree of anaplasia. This thesis shows that utilizing the humoral response to ovarian cancer can be used to identify a tumor antigen in ovarian cancer. The data show that certain antigens may be expressed in ovarian tumors independent of the disease stage or grade, whereas circulating antibodies against such epitopes are only found in a subset of patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell development is a multistage process of differentiation that depends on proper thymocyte-thymic epithelial cell (TEC) interactions. Epithelial cells in the thymus are organized in a three-dimensional network that provides support and signals for thymocyte maturation. Concurrently, proper TEC differentiation in the adult thymus relies on thymocyte-derived signals. TECs produce interleukin-7 (IL-7), a non-redundant cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We have identified IL-7 expressing TECs throughout ontogeny and in the adult thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the thymic primordium by embryonic day 11.5, in a Foxn1 independent pathway. Marked changes occur in the localization and regulation of IL-7 expressing TECs during development. Whereas IL-7 expressing TECs are present throughout the early thymic rudiment, the majority of IL-7 producing TECs are concentrated in the adult thymic medulla. By analyzing mouse strains that sustain blocks at different stages of thymocyte development, we show that IL-7 expression is initiated independently of hematopoietic-derived signals during thymic organogenesis. However, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Furthermore, distinct thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium. Intraperitoneal injection of Recombination Activating Gene deficient mice (RAG-2−/−) with anti-CD3ϵ monoclonal antibody (mAb) induces CD4− 8− double negative thymocytes to undergo β-selection and differentiate into CD4+8+ cells. Analysis of the thymic stromal compartment reveals that progression through β-selection renders thymocytes competent to alter the pattern of IL-7 expression in the cortical TEC compartment. RAG-2−/− mice do not generate mature T cells and therefore the RAG-2−/− thymus is devoid of organized medullary regions. Histological examination of RAG-2−/− thymus following anti-CD3ϵ stimulation reveals the emergence of mature thymic medullary regions, as assessed by H & E staining and expression of thymic stromal medullary markers. Stromal medullary reorganization occurs in the absence of T cell receptor αβ expression, suggesting that activation of RAG-2−/− thymocytes by CD3ϵ ligation generates thymocyte-derived signals that induce thymic epithelial reorganization, generating a mature medullary compartment. This model provides a tool to assess the mechanisms underlying thymic medullary development. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most potent antigen-presenting cells for inducing immune responses to tumor cells. Lin−HLA-DR + DC populations in peripheral blood mononuclear cells (PBMCs) and in ascites mononuclear leukocytes (MNLs) of patients with epithelial ovarian cancer (EOC) are phenotypically immature. Lin−HLA-DR + DCs from PBMCs of normal subjects and EOC patients and MNLs from ascites cells of patients were examined for specific cell surface markers or indicators of differentiation or activation. Separating Lin− HLA-DR+ DCs into subsets based on their HLA-DR intensity provided an additional method for identifying the two major lineages of DCs, myeloid and plasmacytoid. The activation potential of these DCs following exposure to the maturation agents CD40 ligand (CD40L) and lipopolysaccharide (LPS) was examined by measurement of IL-12 and IL-10 concentrations in DC culture supernatants in addition to their ability to stimulate allogeneic T cells. DCs from PBMCs of normal subjects and EOC patients and DCs isolated from ascites MNLs of EOC patients were separated into subsets based on CD11c and CD123 cell surface marker expression identifying the major DC types. These subsets were then compared with cells sorted on the basis of HLA-DR intensity. The in vivo behavior of DCs and DC subsets in peripheral blood and ascites following treatment of peritoneal carcinoma patients with the growth factor fins-like tyrosine kinase 3 ligand (Flt3L) was also examined. Increases in proportions and total numbers of DCs from peripheral blood and ascites were associated with increased secretion of IL-12 and IL-10 following in vitro activation of cultured DCs. There were differences between DCs from PBMCs and ascites and between DC subsets in expression of cell surface markers, cytokine profile, and the ability of Lin−HLA-DR + cells to stimulate proliferation of allogeneic T cells from EOC patients. These Lin−HLA-DR+ cells have certain functional properties that suggest that they could have the potential to facilitate an adaptive anti-tumor immune response. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^