963 resultados para EMBRYONIC-DEVELOPMENT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Betta splendens is a very important ornamental species. The current paper describes the embryonic and larval development of B. splendens under stereomicroscopy and scanning electron microscopy. Eggs and larvae from natural spawning were collected at different developmental stages at previously established intervals and analysed. The eggs of B. splendens are yellowish, clear, spherical, demersal, translucent and telolecithal with a large amount of yolk. Between 0-2 h post-initial collection (hpIC), the eggs were at the egg cell, first cleavage and morula stages. The blastula stage was identified at 2-3 hpIC and the early gastrula phase was observed at 3-4 hpIC with 20% epiboly, which was finalized after 13-18 hpIC. When the pre-larvae were ready to hatch, the appearance of somites and the free tail were observed, at 23-25 hpIC. At 29 hpIC, the majority of larvae had already hatched at an average temperature of 28.4 +/- 0.2 degrees C. The newly hatched larvae measured 2.47 +/- 0.044 mm total length. The mouth opened at 23 h post-hatching (hPH) and the yolk sac was totally absorbed at 73 hPH. After 156 hPH, the heart was pumping blood throughout the entire larval body. The caudal fin, operculum and eyes were well developed at 264 hPH. When metamorphosis was complete at 768 hPH, the larvae became juveniles. The current study presents the first results about early development of B. splendens and provides relevant information for its reproduction, rearing and biology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cotton cultivars expressing Cry proteins are widely used to control lepidopteran pests. The effects of transgenic plants containing insecticidal Cry proteins on non-target species must be comprehended for a better and rational use of this technology for pest management. We investigated the influence of the Bt cotton cultivars NuOPAL and FM 975 on biological parameters of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a non-target pest of Bt cotton cultivars and on its parasitoid Encarsia desantisi Viggiani (Hymenoptera: Aphelinidae). The experiments were conducted in a climatized room, and the non-transgenic near isolines were used for rearing whiteflies as control hosts. The effects of the Bt cotton cultivars on the period of embryonic and larval development and the percentage of adult emergence of B. tabaci were assessed. The period required for embryonic, larval, and pupal development and the percentage of emergence and longevity of E. desantisi females were determined using Bt cotton-fed and non-Bt cotton-fed B. tabaci as hosts. Both Bt cotton cultivars resulted in a decrease of approximately 20% of adult emergence of B. tabaci. Differently, an increase of approximately 10% of adult emergence of E. desantisi was observed for parasitoids that used hosts fed with both Bt cotton cultivars. However, female parasitoid longevity decreased when their hosts were fed on Bt cotton cultivars. Our data suggest that the use of Bt cotton cultivars in association with the biological control agent E. desantisi could be functional for the management of B. tabaci in Bt cotton crops.
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.
Resumo:
Defects in the COP9 signalosome (CSN) impair multicellular development, including embryonic plant or animal death or a block in sexual development of the fungus Aspergillus nidulans. CSN deneddylates cullin-RING ligases (CRLs), which are activated by covalent linkage to ubiquitin-like NEDD8. Deneddylation allows CRL disassembly for subsequent reassembly. An attractive hypothesis is a consecutive order of CRLs for development, which demands repeated cycles of neddylation and deneddylation for reassembling CRLs. Interruption of these cycles could explain developmental blocks caused by csn mutations. This predicts an accumulation of neddylated CRLs exhibiting developmental functions when CSN is dysfunctional. We tested this hypothesis in A. nidulans, which tolerates reduced levels of neddylation for growth. We show that only genes for CRL subunits or neddylation are essential, whereas CSN is primarily required for development. We used functional tagged NEDD8, recruiting all three fungal cullins. Cullins are associated with the CSN1/CsnA subunit when deneddylation is defective. Two CRLs were identified which are specifically involved in differentiation and accumulate during the developmental block. This suggests that an active CSN complex is required to counteract the accumulation of specific CRLs during development.
Resumo:
Clinical application of human embryonic stem cells will be possible, when cell lines are created under xeno-free and defined conditions. We aimed to establish methodologies for parthenogenetic activation, culture to blastocyst and mechanical isolation of the inner cell mass (ICM) using bovine oocytes, as a model for derivation and proliferation of human embryonic stem cells under defined xeno-free culture conditions. Cumulus-oocyte-complexes were in vitro matured and activated using Ca(2+)Ionophore and 6-DMAP or in vitro fertilized (IVF). Parthenotes and biparental embryos were cultured to blastocysts, when their ICM was mechanically isolated and placed onto a substrate of fibronectin in StemProA (R) medium. After attachment, primary colonies were left to proliferate and stained for pluripotency markers, alkaline phosphatase and Oct-4. Parthenogenesis and fertilization presented significantly different success rates (91 and 79 %, respectively) and blastocyst formation (40 and 43 %, respectively). ICMs from parthenogenetic and IVF embryos formed primary and expanded colonies at similar rates (39 % and 33 %, respectively). Six out of eight parthenogenetic colonies tested positive for alkaline phosphatase. Three colonies were analyzed for Oct-4 and they all tested positive for this pluripotency marker. Our data show that Ca2+ Ionophore, and 6-DMAP are efficient in creating large numbers of blastocysts to be employed as a model for human oocyte activation and embryo development. After mechanical isolation, parthenogetic derived ICMs showed a good rate of derivation in fibronectin and Stem-Pro forming primary and expanded colonies of putative embryonic stem cells. This methodology may be a good strategy for parthenogenetic activation of discarded human oocytes and derivation in defined conditions for future therapeutic interventions.
Resumo:
Measurements on the growth process and placental development of the embryo and fetuses of Cavia porcellus were carried out using ultrasonography. Embryo, fetus, and placenta were monitored from Day 15 after mating day to the end of gestation. Based on linear and quadratic regressions, the following morphometric analysis showed a good indicator of the gestational age: placental diameter, biparietal diameter, renal length, and crown rump. The embryonic cardiac beat was first detected at an average of 22.5 days. The placental diameter showed constant increase from beginning of gestation then remained to term and presented a quadratic correlation with gestational age (r2 = 0.89). Mean placental diameter at the end of pregnancy was 3.5 ± 0.23 cm. By Day 30, it was possible to measure biparietal diameter, which followed a linear pattern of increase up to the end of gestation (r2 = 0.95). Mean biparietal diameter in the end of pregnancy was 1.94 ± 0.03 cm. Kidneys were firstly observed on Day 35 as hyperechoic structures without the distinction of medullar and cortical layers, thus the regression model equation between kidney length and gestational age presents a quadratic relationship (r2 = 0.7). The crown rump presented a simple linear growth, starting from 15 days of gestation, displaying a high correlation with the gestational age (r2 = 0.9). The offspring were born after an average gestation of 61.3 days. In this study, we conclude that biparietal diameter, placental diameter, and crown rump are adequate predictive parameters of gestational age in guinea pigs because they present high correlation index.
Resumo:
Die TGFbeta/BMP Signaltransduktionskaskade ist wichtig für viele Entwicklungsprozesse fast aller embryonaler sowie extraembryonaler Gewebe und sie ist ebenso essentiell bei der Aufrechterhaltung der Homöostase im adulten Organismus. In vielen Mausmodellen und Zellkulturversuchen wurde gezeigt, dass Liganden dieses Signalweges in verschiedene Stadien der Knorpel- und Knochenentwicklung involviert sind. BMPs sind beispielsweise maßgeblich an der frühen Kondensation und Bildung des Knorpels und später an Proliferation und Hypertrophie der Chondrozyten beteiligt. BMPs können ektopisch Knochenbildung auslösen und das Expressionsmuster der Liganden und spezifischen Rezeptoren in der Wachstumsfuge lässt auf eine wichtige Rolle der BMPs in der Wachstumsfuge schließen. Der gezielte knock out der BMP-Rezeptoren Bmpr1a und Bmpr1b in proliferierenden Chondrozyten führt zur Ausbildung einer generellen Chondrodysplasie. Smad1, Smad5 und Smad8 sind die Mediatoren der BMP-Signalkaskade. Im Rahmen der vorliegenden Arbeit sollte die Rolle und Funktion der Smad1- und Smad5-Proteine in der Wachstumsfuge untersucht werden. Hierzu wurden konditionale Smad1-knock out-Mäuse mit einer transgenen Mauslinie gekreuzt, die die Cre-Rekombinase spezifisch in proliferierenden Chondrozyten exprimiert. Diese Mäuse wurden mit und ohne heterozygotem Smad5-Hintergrund charakterisiert. Bei einem knock out von Smad1 allein konnte ein leichte Verkürzung der Wachstumsfuge beobachtet werden, wobei prähypertrophe und hypertrophe Zone gleichermaßen betroffen waren. Dieser Phänotyp war verstärkt in Mäusen mit zusätzlichem heterozygotem Smad5-Hintergrund. Eine Verringerung der Proliferationsrate konnte zusammen mit einer verminderten Ihh-Expression nachgewiesen werden. Zusätzlich konnte anhand von Röntgenaufnahmen eine Dysorganisation der nasalen Region und ein fehlendes nasales Septum beobachtet werden. Produktion und Mineralisation der extrazellulären Matrix waren nicht beeinträchtigt. Um die Rolle der BMP- und TGFbeta-Signalkaskaden während der endochondralen Ossifikation zu vergleichen, wurden transgene Mäuse generiert, in denen die TGFbeta-Signalkaskade spezifisch in proliferierenden Chondrozyten gestört war. Zwei Mauslinien, die ähnliche Phänotypen zeigten, wurden untersucht. Esl1 ist ein TGFbeta-bindendes Protein, von dem man annimmt, dass es die TGFbeta-Signalkaskade inhibieren kann. Esl1-knock out-Mäuse sind kleiner als Wildtypmäuse und die Überexpression von Esl1 in proliferierenden Chondrozyten führt zu einer Verlängerung der Wachstumsfuge und einer verstärkten Proliferationsrate. Knorpelmarker, wie Col2a1 und Sox9 sind in diesen Mäusen herunterreguliert, während Col10a1 und Ihh als Marker für die hypertrophe und prähypertrophe Zone herunterreguliert waren. Dies führt zu der Annahme, dass mehr Zellen in die terminale Differenzierung eintreten. Bei transgenen Mäusen, in denen ein dominant-negativer (dn) TGFbeta-Rezeptor in proliferierenden Chondrozyten überexprimiert wurde, konnte eine verlängerte prähypertrophe Zone, eine erhöhte Ihh-Expression, sowie eine verstärkte Proliferationsrate beobachtet werden. Zusätzlich konnte in homozygoten Tieren ein craniofacialer Phänotyp beschrieben werden, der zu Problemen bei der Nahrungsaufnahme und damit zu einer starken Wachstumsbeeinträchtigung führte. Die BMP- und TGFbeta-Signalkaskaden haben möglicherweise antagonistische Effekte in der Wachstumsfuge. Während der Ausfall von BMP in proliferierenden Chondrozyten aufgrund einer gesunkenen Proliferationsrate zu einer Verkürzung der Wachstumsfuge führte, kann man in Mäusen mit einer Störung der TGFbeta-Signalkaskade eine verstärkte Proliferation in einer daher verlängerten Wachstumsfuge beobachten. Ein weiteres Ziel dieser Arbeit war die Generation einer transgenen Mauslinie, die die Cre-Rekombinase spezifisch in hypertrophen Chondrozyten exprimiert. Promoterstudien mit transgenen Mäusen weisen darauf hin, dass ein putatives AP1-Element, etwa 4 kb vor dem ersten Exon des Col10a1 gelegen, wichtig für die spezifische Expression in hypertrophen Chondrozyten ist. Ein Konstrukt, dass vier Kopien dieses Elements und den basalen Promoter enthält, wurde benutzt, um die Cre-Rekombinase spezifisch zu exprimieren. Diese Mauslinie befindet sich in der Testphase und erste Daten deuten auf eine spezifische Expression der Cre-Rekombinase in hypertrophen Chondrozyten hin.
Resumo:
This study deals with the function and regulation of programmed cell death, or apoptosis, in the development of the embryonic central nervous system of Drosophila melanogaster. The first part provides a description of apoptosis-deficient embryos, which showed that preventing apoptosis does not cause gross morphological defects in the CNS, as it appears well organized despite the presence of too many cells. An analysis of the incidence and pattern of apoptosis over the course of development discloses a partly very orderly pattern suggesting tight spatio-temporal control, but also reveals random apoptotic cells, which suggests a certain amount of plasticity in the embryo. This analysis also allowed precise identification of some of the dying neural cells in the embryo, and establishment of single cell models for studying regulation of segment-specific apoptosis in the embryonic CNS. In the second part of the work, further investigations into mechanisms controlling segment-specific apoptosis revealed the involvement of two Hox genes, Antennapedia (Antp) and Ultrabithorax (Ubx), in this process. Hox genes control the formation of segment-specific structures in their domains of expression, but also regulate organ and tissue morphogenesis. The study presented here shows that Antp and Ubx play antagonistic roles in motoneuron survival in the embryo. Ubx expression in the CNS is strongly upregulated at a late point in development, when most cells have begun to differentiate. This upregulation shortly precedes Ubx-dependent, segment-specific apoptosis of two differentiated motoneurons. It could further be demonstrated that Antp is required for proper development of the NB7-3 lineage and for survival of the NB7-3 motoneuron in the anterior thoracic segments. In segments where Antp and Ubx expression overlaps, Ubx counteracts the anti-apoptotic function of Antp, resulting in cell death. Thus, these two Hox genes play opposing roles in the survival of differentiated neurons in the late developing nervous system. They thereby contribute to establishment of correct connections between outward-projecting neurons and their targets, which is crucial for the assembly of functional neural circuits, as these have to fulfill region-specific locomotion and sensory requirements along the antero-posterior body axis.
Resumo:
Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82% higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4%; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.