962 resultados para ELEGANS
Resumo:
Ongoing zooplankton research at the Plymouth Marine Laboratory has established a time series of zooplankton species since 1988 at L4, a coastal station off Plymouth. Samples were collected by vertical net hauls (WP2 net, mesh 200 µm; UNESCO 1968) from the sea floor (approximately 50 m) to the surface and stored in 4% formalin. Much of the zooplankton analysis has been to the level of "major taxonomic groups" only, and a number of different analysts have participated over the years. The level of expertise has generally been consistent, but the user should be aware that levels of taxonomic discrimination may vary during the course of the dataset. The dominant calanoid copepods are generally well discriminated to species throughout. Calanus has not been routinely examined for species determination, the assumption being that the local population is entirely composed of Calanus helgolandicus. In certain years there has been a particular interest in Temora stylifera, Centropages cherchiae and other species reflected in the dataset. The lack of records in other previous years does not necessarily reflect species absence. We view it as essential for all users of L4 plankton data to establish and maintain contact with the nominated current data originators as well as fully consulting the metadata. While not impinging on free data access, this ensures that this large, species-rich but slightly complex species database is being used in the correct way, and any potential issues with the data are clarified. Furthermore, a proper dialogue with these local experts on the time series will enable where appropriate the most recent sampling timepoints to be used. The data can be downloaded from BODC or from doi:10.1594/PANGAEA.778092 as files for each year by searching for "L4 zooplankton". The most comprehensive dataset is the version downloadable directly from this page. The entire set of zooplankton samples is stored at the Plymouth Marine Laboratory in buffered formalin, and may be available for further taxonomic analysis on request.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.