820 resultados para EASTERN TAIWAN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two main areas were examined in this project: * The detailed climatic history of the second part of the Holocene (approximately the last 5500 calendar years) for the Zapadnodvinskaya lowland, making it possible to reconstruct general climatic changes in eastern Europe (taking other palynological, dendrochronological, historical and instrumental data into account). * The most important historical events for the period of the 9th-17th centuries that had an impact on Russian history. The comparative chronology of the main climatic changes and events of Russian social history showed that as local climatic conditions became worse (i.e. falling average annual temperature or precipitation rate) the density of significant events in society rose. This suggests that climatic deterioration is both a stimulus and an outstanding factor in social development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protecting ground water from pollution in the rural areas of Ukraine is a priority, particularly because the largely unconfined aquifers are used by local people for potable water supply. The most important aim of this project was to characterise the scale and impact of pollution sources on groundwater quality according to the nature of groundwater vulnerability and of the particular sources of pollution. Analysis of 50 different maps of Ukraine according to geochemical, natural and landscape features, together with field studies made it possible to identify areas with different pollution risk factors. The most harmful sources of groundwater contamination providing nitrates, petrol, heavy metals and other pollutants were identified and an integral method of groundwater quality assessment was worked out. The main sources of groundwater contamination in rural areas of Ukraine were identified and listed in order of importance. Magmedov also puts forward recommendations for improving monitoring of groundwater quality as an essential part of sustainable development in rural areas of Ukraine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aimed to discover how differences in living standards between regional units changed during the period of transformation from 1990 to 1995 in Poland, the Slovak Republic, the Czech Republic and Hungary. The standard of living was measured by the so-called Living Standard Index (LSI), a composite taxonomic measure. Fixed reference points make it possible to compare the standard of living in regional administrative units and to study its dynamics. The analysis was country-specific, since the lists of variable were not fully identical for all the countries studied. The main tools used were LSI variability measures (mainly variance and standard deviation). By identifying trend patterns in the characteristics of LSIs, it was possible to compare the different countries. It was found that * differences in living standards between regional units have been decreasing during the transformation in Poland and in the Czech Republic. In the latter this process is slow and smooth, while in Poland there was a relatively sharp decline which then stopped entirely in 1994 * the only country with increasing differences between regions is Hungary and these differences are growing at a constant rate * the lowest level of regional differences in the LSI was found in Poland, followed by the Slovak Republic and the Czech Republic * the regional differences in Hungary are almost twice as high as in the Czech Republic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This broad range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees. The critical loads approach is an ecosystem assessment tool with great potential to simplify complex scientii c information and effectively communicate with the policy community and the public. This synthesis represents the i rst comprehensive assessment of empirical critical loads of N for ecoregions across the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found a significant positive correlation between local summer air temperature (May-September) and the annual sediment mass accumulation rate (MAR) in Lake Silvaplana (46°N, 9°E, 1800 m a.s.l.) during the twentieth century (r = 0.69, p < 0.001 for decadal smoothed series). Sediment trap data (2001-2005) confirm this relation with exceptionally high particle yields during the hottest summer of the last 140 years in 2003. On this base we developed a decadal-scale summer temperature reconstruction back to AD 1580. Surprisingly, the comparison of our reconstruction with two other independent regional summer temperature reconstructions (based on tree-rings and documentary data) revealed a significant negative correlation for the pre-1900 data (ie, late ‘Little Ice Age’). This demonstrates that the correlation between MAR and summer temperature is not stable in time and the actualistic principle does not apply in this case. We suggest that different climatic regimes (modern/‘Little Ice Age’) lead to changing state conditions in the catchment and thus to considerably different sediment transport mechanisms. Therefore, we calibrated our MAR data with gridded early instrumental temperature series from AD 1760-1880 (r = -0.48, p < 0.01 for decadal smoothed series) to properly reconstruct the late LIA climatic conditions. We found exceptionally low temperatures between AD 1580 and 1610 (0.75°C below twentieth-century mean) and during the late Maunder Minimum from AD 1680 to 1710 (0.5°C below twentieth-century mean). In general, summer temperatures did not experience major negative departures from the twentieth-century mean during the late ‘Little Ice Age’. This compares well with the two existing independent regional reconstructions suggesting that the LIA in the Alps was mainly a phenomenon of the cold season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glacier–climate model was used to calculate climatic conditions in a test site on the east Andean slope around Cochabamba (17°S, Bolivia) for the time of the maximum Late Pleistocene glaciation. Results suggest a massive temperature reduction of about − 6.4 °C (+ 1.4/− 1.3 °C), combined with annual precipitation rates of about 1100 mm (+ 570 mm/− 280 mm). This implies no major change in annual precipitation compared with today. Summer precipitation was the source for the humidity in the past, as is the case today. This climate scenario argues for a maximum advance of the paleo-glaciers in the eastern cordillera during the global Last Glacial Maximum (LGM, 20 ka BP), which is confirmed by exposure age dates. In a synthesized view over the central Andes, the results point to an increased summer precipitation-driven Late Glacial (15–10 ka BP) maximum advance in the western part of the Altiplano (18°S–23°S), a temperature-driven maximum advance during full glacial times (LGM) in the eastern cordillera, and a pre- and post-LGM (32 ka BP/14 ka BP) maximum advance around 30°S related to increased precipitation and reduced temperature on the western slope of the Andes. The results indicate the importance of understanding the seasonality and details of the mass balance–climate interaction in order to disentangle drivers for the observed regionally asynchronous past glaciations in the central Andes.