972 resultados para Dynamics of systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ink-jet printing of nano-metallic colloidal fluids on to porous media such as coated papers has become a viable method to produce conductive tracks for low-cost, disposable printed electronic devices. However, the formation of well-defined and functional tracks on an absorbing surface is controlled by the drop imbibition dynamics in addition to the well-studied post-impact drop spreading behavior. This study represents the first investigation of the real-time imbibition of ink-jet deposited nano-Cu colloid drops on to coated paper substrates. In addition, the same ink was deposited on to a non-porous polymer surface as a control substrate. By using high-speed video imaging to capture the deposition of ink-jet drops, the time-scales of drop spreading and imbibition were quantified and compared with model predictions. The influences of the coating pore size on the bulk absorption rate and nano-Cu particle distribution have also been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of fish and fisheries in Africa fall in to four phases: the period of fisheries expeditions, ecological investigations, the development phase, and the period of mechanized exploitation. There is need to establish the taxonomic status and ecology of the varied components of the potentially important Haplochromis in Lake Victoria. A comprehensive study of their bionomics and life history, population structure, natality, recruitment and mortality coefficients should be undertaken. Emphasis lo be laid on the study of the ecology, especially breeding behaviour of the economically important c1upeids (Stolothrissa tanganciae and Limnothrissa miodon), in Lake Tanganyika. A comprehensive investigation into the migratory and shoaling behaviour of the Lake Victoria Tilapia to be initiated. Pre-impoundment studies to be undertaken to assess effects of hydroelectric projects of fisheries. Studies on parasites of economically important fishes to be stepped up to assess pathological effects and the biological basis for their control. The role of predators, e.g., Hydrocyon, Lates and Micropterus salmoides in commercial fish populations should be evaluated, and the knowledge gaincd used to effectively manage the fisheries in favour of the more desirable fish stocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 在澜沧江下游/ 湄公河上游的滇南西双版纳地区,通过样方法比较了热带雨林的连片与3 个小片断的物 种多样性变化趋势。与连续森林比较,片断热带雨林的植物物种丰富度和物种多样性指数都比较低,而且有相当低 比例的大高位芽、中高位芽和附生等生活型植物,而藤本、小高位芽和矮高位芽等生活型植物的比例则较高;泛热 带、热带亚洲至热带非洲的区系成分比例较高,而当地成分则减少;群落的上层树木比下层树木更加稳定。同样,动 物的物种多样性指数和均衡度在片断热带雨林中都较低,与其密切相关的是片断热带雨林的环境质量,而不是片 断的大小。此外,也探讨了片断热带雨林物种变化与森林小气候的关系,阐明了由凉湿向干暖转化的“林内效应"是 其物种变化的重要原因之一。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the behavior of RNAs with large bulges In solution, molecular dynamics was performed on the RNA molecule in water with A6 bulge. The result of simulation showed that nonstacked conformation Is the main conformation in large bulges, and the backbone of large bulge is of great conformational flexibility, but bulges-induced bends are relatively rigid. The fluctuation in bulge has little influence on the bend angle of RNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many insects with smooth adhesive pads can rapidly enlarge their contact area by centripetal pulls on the legs, allowing them to cope with sudden mechanical perturbations such as gusts of wind or raindrops. The short time scale of this reaction excludes any neuromuscular control; it is thus more likely to be caused by mechanical properties of the pad's specialized cuticle. This soft cuticle contains numerous branched fibrils oriented almost perpendicularly to the surface. Assuming a fixed volume of the water-filled cuticle, we hypothesized that pulls could decrease the fibril angle, thereby helping the contact area to expand laterally and longitudinally. Three-dimensional fluorescence microscopy on the cuticle of smooth stick insect pads confirmed that pulls significantly reduced the fibril angle. However, the fibril angle variation appeared insufficient to explain the observed increase in contact area. Direct strain measurements in the contact zone demonstrated that pulls not only expand the cuticle laterally, but also add new contact area at the pad's outer edge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geometric alignment of turbulent strain-rate structures with premixed flames greatly influences the results of the turbulence-flame interaction. Here, the statistics and dynamics of this alignment are experimentally investigated in turbulent premixed Bunsen flames using high-repetition-rate stereoscopic particle image velocimetry. In all cases, the statistics showed that the most extensive principal strain-rate associated with the turbulence preferentially aligned such that it was more perpendicular than parallel to the flame surface normal direction. The mean turbulence-flame alignment differed between the flames, with the stronger flames (higher laminar flame speed) exhibiting stronger preferential alignment. Furthermore, the preferential alignment was greatest on the reactant side of the mean flame brush. To understand these differences, individual structures of fluid-dynamic strain-rate were tracked through time in a Lagrangian manner (i.e., by following the fluid elements). It was found that the flame surface affected the orientation of the turbulence structures, with the majority of structures rotating as they approached the flame such that their most extensive principal strain-rate was perpendicular to the flame normal. The maximum change in turbulent structure orientation was found to decrease with the strength of the structure, increase with the strength of the flame, and exhibit similar trends when the structure strength and flame strength were represented by a Karlovitz number. The mean change in orientation decreased from the unburnt to burnt side of the flame brush and appears to be influenced by the overall flame shape. © 2011 The Combustion Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation of thin aerofoil wakes we compare the global nonlinear dynamics, obtained by direct numerical simulations, to the associated local instability features, derived from linear stability analyses. A given configuration depends on two control parameters: the Reynolds number Re and the adverse pressure gradient m (with m < 0) prevailing at the aerofoil trailing edge. Global instability is found to occur for large enough Re and |m|; the naturally selected frequency is determined by the local absolute frequency prevailing at the trailing edge. © 2010 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibodies are known to be essential in controlling Salmonella infection, but their exact role remains elusive. We recently developed an in vitro model to investigate the relative efficiency of four different human immunoglobulin G (IgG) subclasses in modulating the interaction of the bacteria with human phagocytes. Our results indicated that different IgG subclasses affect the efficacy of Salmonella uptake by human phagocytes. In this study, we aim to quantify the effects of IgG on intracellular dynamics of infection by combining distributions of bacterial numbers per phagocyte observed by fluorescence microscopy with a mathematical model that simulates the in vitro dynamics. We then use maximum likelihood to estimate the model parameters and compare them across IgG subclasses. The analysis reveals heterogeneity in the division rates of the bacteria, strongly suggesting that a subpopulation of intracellular Salmonella, while visible under the microscope, is not dividing. Clear differences in the observed distributions among the four IgG subclasses are best explained by variations in phagocytosis and intracellular dynamics. We propose and compare potential factors affecting the replication and death of bacteria within phagocytes, and we discuss these results in the light of recent findings on dormancy of Salmonella.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human listeners can identify vowels regardless of speaker size, although the sound waves for an adult and a child speaking the ’same’ vowel would differ enormously. The differences are mainly due to the differences in vocal tract length (VTL) and glottal pulse rate (GPR) which are both related to body size. Automatic speech recognition machines are notoriously bad at understanding children if they have been trained on the speech of an adult. In this paper, we propose that the auditory system adapts its analysis of speech sounds, dynamically and automatically to the GPR and VTL of the speaker on a syllable-to-syllable basis. We illustrate how this rapid adaptation might be performed with the aid of a computational version of the auditory image model, and we propose that an auditory preprocessor of this form would improve the robustness of speech recognisers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting the response of a structure following an impact is of interest in situations where parts of a complex assembly may come into contact. Standard approaches are based on the knowledge of the impulse response function, requiring the knowledge of the modes and the natural frequencies of the structure. In real engineering structures the statistics of higher natural frequencies follows those of the Gaussian Orthogonal Ensemble, this allows the application of random point process theory to get a mean impulse response function by the knowledge of the modal density of the structure. An ensemble averaged time history for both the response and the impact force can be predicted. Once the impact characteristics are known in the time domain, a simple Fourier Transform allows the frequency range of the impact excitation to be calculated. Experimental and numerical results for beams, plates, and cylinders are presented to confirm the validity of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe the time-varying amplitude and its relation to the global heat release rate of self-excited azimuthal instabilities in a simple annular combustor operating under atmospheric conditions. The combustor was modular in construction consisting of either 12, 15 or 18 equally spaced premixed bluff-body flames around a fixed circumference, enabling the effect of large-scale interactions between adjacent flames to be investigated. High-speed OH* chemiluminescence imaged from above the annulus and pressure measurements obtained at multiple locations around the annulus revealed that the limit cycles of the modes are degenerate in so much as they undergo continuous transitions between standing and spinning modes in both clockwise (CW) and anti-clockwise (ACW) directions but with the same resonant frequency. Similar behaviour has been observed in LES simulations which suggests that degenerate modes may be a characteristic feature of self-excited azimuthal instabilities in annular combustion chambers. By modelling the instabilities as two acoustic waves of time-varying amplitude travelling in opposite directions we demonstrate that there is a statistical prevalence for either standing m=1 or spinning m=±1 modes depending on flame spacing, equivalence ratio, and swirl configuration. Phase-averaged OH* chemiluminescence revealed a possible mechanism that drives the direction of the spinning modes under limit-cycle conditions for configurations with uniform swirl. By dividing the annulus into inner and outer annular regions it was found that the spin direction coincided with changes in the spatial distribution of the peak heat release rate relative to the direction of the bulk swirl induced along the annular walls. For standing wave modes it is shown that the globally integrated fluctuations in heat release rate vary in magnitude along the acoustic mode shape with negligible contributions at the pressure nodes and maximum contributions at the pressure anti-nodes. © 2013.