721 resultados para Dymanic panel data


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of this research project was to obtain an understanding of the barriers to and facilitators of providing palliative care in neonatal nursing. This article reports the first phase of this research: to develop and administer an instrument to measure the attitudes of neonatal nurses to palliative care. METHODS The instrument developed for this research (the Neonatal Palliative Care Attitude Scale) underwent face and content validity testing with an expert panel and was pilot tested to establish temporal stability. It was then administered to a population sample of 1285 neonatal nurses in Australian NICUs, with a response rate of 50% (N 645). Exploratory factor-analysis techniques were conducted to identify scales and subscales of the instrument. RESULTS Data-reduction techniques using principal components analysis were used. Using the criteria of eigenvalues being 1, the items in the Neonatal Palliative Care Attitude Scale extracted 6 factors, which accounted for 48.1% of the variance among the items. By further examining the questions within each factor and the Cronbach’s of items loading on each factor, factors were accepted or rejected. This resulted in acceptance of 3 factors indicating the barriers to and facilitators of palliative care practice. The constructs represented by these factors indicated barriers to and facilitators of palliative care practice relating to (1) the organization in which the nurse practices, (2) the available resources to support a palliative model of care, and (3) the technological imperatives and parental demands. CONCLUSIONS The subscales identified by this analysis identified items that measured both barriers to and facilitators of palliative care practice in neonatal nursing. While establishing preliminary reliability of the instrument by using exploratory factor-analysis techniques, further testing of this instrument with different samples of neonatal nurses is necessary using a confirmatory factor-analysis approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In daily activities people are using a number of available means for the achievement of balance, such as the use of hands and the co-ordination of balance. One of the approaches that explains this relationship between perception and action is the ecological theory that is based on the work of a) Bernstein (1967), who imposed the problem of ‘the degrees of freedom’, b) Gibson (1979), who referred to the theory of perception and the way which the information is received from the environment in order for a certain movement to be achieved, c) Newell (1986), who proposed that movement can derive from the interaction of the constraints that imposed from the environment and the organism and d) Kugler, Kelso and Turvey (1982), who showed the way which “the degrees of freedom” are connected and interact. According to the above mentioned theories, the development of movement co-ordination can result from the different constraints that imposed into the organism-environment system. The close relation between the environmental and organismic constraints, as well as their interaction is responsible for the movement system that will be activated. These constraints apart from shaping the co-ordination of specific movements can be a rate limiting factor, to a certain degree, in the acquisition and mastering of a new skill. This frame of work can be an essential tool for the study of catching an object (e.g., a ball). The importance of this study becomes obvious due to the fact that movements that involved in catching an object are representative of every day actions and characteristic of the interaction between perception and action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principal Topic In this paper we seek to highlight the important intermediate role that the gestation process plays in entrepreneurship by examining its key antecedents and its consequences for new venture emergence. In doing so we take a behavioural perspective and argue that it is not only what a nascent venture is, but what it does (Katz & Gartner, 1988; Shane & Delmar, 2004; Reynolds, 2007) and when it does it during start-up (Reynolds & Miller, 1992; Lichtenstein, Carter, Dooley & Gartner, 2007) that is important. To extend an analogy from biological development, what we suggest is that the way a new venture is nurtured is just as fundamental as its nature. Much prior research has focused on the nature of new ventures and attempted to attribute variations in outcomes directly to the impact resource endowments and investments have. While there is little doubt that venture resource attributes such as human capital, and specifically prior entrepreneurial experience (Alsos & Kolvereid, 1998), access to social (Davidsson & Honig, 2003) and financial capital have an influence. Resource attributes themselves are distal from successful start-up endeavours and remain inanimate if not for the actions of the nascent venture. The key contribution we make is to shift focus from whether or not actions are taken, but when these actions happen and how that is situated in the overall gestation process. Thus, we suggest that it is gestation process dynamics, or when gestation actions occur, that is more proximal to venture outcomes and we focus on this. Recently scholars have highlighted the complexity that exists in the start-up or gestation process, be it temporal or contextual (Liao, Welsch & Tan, 2005; Lichtenstein et al. 2007). There is great variation in how long a start-up process might take (Reynolds & Miller, 1992), some processes require less action than others (Carter, Gartner & Reynolds, 1996), and the overall intensity of the start-up effort is also deemed important (Reynolds, 2007). And, despite some evidence that particular activities are more influential than others (Delmar & Shane, 2003), the order in which events may happen is, until now, largely indeterminate as regard its influence on success (Liao & Welsch, 2008). We suggest that it is this complexity of the intervening gestation process that attenuates the effect of resource endowment and has resulted in mixed findings in previous research. Thus, in order to reduce complexity we shall take a holistic view of the gestation process and argue that it is its’ dynamic properties that determine nascent venture attempt outcomes. Importantly, we acknowledge that particular gestation processes of themselves would not guarantee successful start-up, but it is more correctly the fit between the process dynamics and the ventures attributes (Davidsson, 2005) that is influential. So we aim to examine process dynamics by comparing sub-groups of venture types by resource attributes. Thus, as an initial step toward unpacking the complexity of the gestation process, this paper aims to establish the importance of its role as an intermediary between attributes of the nascent venture and the emergence of that venture. Here, we make a contribution by empirically examining gestation process dynamics and their fit with venture attributes. We do this by firstly, examining that nature of the influence that venture attributes such as human and social capital have on the dynamics of the gestation process, and secondly by investigating the effect that gestation process dynamics have on venture creation outcomes. Methodology and Propositions In order to explore the importance that gestation processes dynamics have in nascent entrepreneurship we conduct an empirical study of ventures start-ups. Data is drawn from a screened random sample of 625 Australian nascent business ventures prior to them achieving consistent outcomes in the market. This data was collected during 2007/8 and 2008/9 as part of the Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) project (Davidsson et al., 2008). CAUSEE is a longitudinal panel study conducted over four years, sourcing information from annually administered telephone surveys. Importantly for our study, this methodology allows for the capture and tracking of active nascent venture creation as it happens, thus reducing hindsight and selection biases. In addition, improved tests of causality may be made given that outcome measures are temporally removed from preceding events. The data analysed in this paper represents the first two of these four years, and for the first time has access to follow-up outcome measures for these venture attempts: where 260 were successful, 126 were abandoned, and 191 are still in progress. With regards to venture attributes as gestation process antecedents, we examine specific human capital measured as successful prior experience in entrepreneurship, and direct social capital of the venture as ‘team start-ups’. In assessing gestation process dynamics we follow Lichtenstein et al. (2007) to suggest that the rate, concentration and timing of gestation activities may be used to summarise the complexity dynamics of that process. In addition, we extend this set of measures to include the interaction of discovery and exploitation by way of changes made to the venture idea. Those ventures with successful prior experience or those who conduct symbiotic parallel start-up attempts may be able to, or be forced to, leave their gestation action until later and still derive a successful outcome. In addition access to direct social capital may provide the support upon which the venture may draw in order to persevere in the face of adversity, turning a seemingly futile start-up attempt into a success. On the other hand prior experience may engender the foresight to terminate a venture attempt early should it be seen to be going nowhere. The temporal nature of these conjectures highlight the importance that process dynamics play and will be examined in this research Statistical models are developed to examine gestation process dynamics. We use multivariate general linear modelling to analyse how human and social capital factors influence gestation process dynamics. In turn, we use event history models and stratified Cox regression to assess the influence that gestation process dynamics have on venture outcomes. Results and Implications What entrepreneurs do is of interest to both scholars and practitioners’ alike. Thus the results of this research are important since they focus on nascent behaviour and its outcomes. While venture attributes themselves may be influential this is of little actionable assistance to practitioners. For example it is unhelpful to say to the prospective first time entrepreneur “you’ll be more successful if you have lots of prior experience in firm start-ups”. This research attempts to close this relevance gap by addressing what gestation behaviours might be appropriate, when actions best be focused, and most importantly in what circumstances. Further, we make a contribution to the entrepreneurship literature, examining the role that gestation process dynamics play in outcomes, by specifically attributing these to the nature of the venture itself. This extension is to the best of our knowledge new to the research field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualitative research methods require transparency to ensure the ‘trustworthiness’ of the data analysis. The intricate processes of organizing, coding and analyzing the data are often rendered invisible in the presentation of the research findings, which requires a ‘leap of faith’ for the reader. Computer assisted data analysis software can be used to make the research process more transparent, without sacrificing rich, interpretive analysis by the researcher. This article describes in detail how one software package was used in a poststructural study to link and code multiple forms of data to four research questions for fine-grained analysis. This description will be useful for researchers seeking to use qualitative data analysis software as an analytic tool.