973 resultados para Dufour gland
Resumo:
Neural nitric oxide synthase, neuroendocrine stress response, forced swimming, nNOS KO mice, hypothalamus, adrenal gland
Resumo:
This paper deals with anatomical descriptions of some types of nectaries in 27 species of honey plants of Piracicaba, S. P. The material studied was divides in two groups: a) Extra-floral nectaries; b) Floral nectaries. Euphorbia pulcherrima, Willd; showed to belonging to the first group: its nectaries tissue consist of an epidermal layer of cell without stomata and with true gland, with subepidermal cells diferentiated by the thickness of the wall. Among the plants with floral nectaries, the following types has been listed, according the location of the nectary in the flower: 1 - with true glands: a) in sepals, Hibiscus rosa sinensis, L.; Dombeya Wallichii, Bth. e Hk; b) in the stamens tube, Antigonum leptopus, Hook e Arn.; 2 - on the receptacle with nectariferous tissue in the epidermal cell with: a) thickness wall with stomata, Prunus persical, L.; b) thin wall without stomata, Crotalaria paulinia, Shranck; Caesal-pinia sepiaria, Roxb; Aberia caffra; 3 - with a disc located in the receptacle with: epidermal: a) with stomata, Coffea arábica, L. var. semper florens; Citrus aurantifolia, Swing; Cinchona sp.; Pryrostegia ignea, Presl.; b) without stomata and with thin wall, Leojurus sibiricus, L.; Bactocydia unguis, Mart., Ipomoea purpurea, L.; Greviüea Thelemanniana, Hueg.; Dolichos lablab, L.; Vernonia polyanthes, Less., Montanoa bipinatifida, C. Koch., Eruca sativa, L. Brassica Juncea, Co; Eucalyptus tereticomis, Smith.; Eucalyptus rostrata, Schleche; Salvia splendens, Selow.; 4 - in the basal tissues of the ovary, Budleia brasiliensis, Jacq F.; Petrea subserrata, Cham.; 5 - in the base of stamens, Per sea americana, Mill. On the anatomical point of view, most of the types of nectary studied has external nectariferous tissues, located on the epidermal cells with thin periclinal wall and without stomata. The sub-epidermal layer were rich in sugar. Short correlation was found between the structure of the nectary and the amount of nectar secretion. So, in the nectary with true glands, in those with thin wall and without stomata on epidermal cells and in those with stomata, the secretion was higher than in the other types listed.
Resumo:
A detailed description of the morphology of the digestive organs of Enteroctopus megalocyathus (Gould, 1852) and Loligo sanpaulensis Brakoniecki, 1984 is given. The mandibles, the crop diverticulum, a doubly coiled caecum, the loop of the medium intestine and the appendages of the digestive gland are first described for E. megalocyathus. The most outstanding finding in L. sanpaulensis is the location of the single posterior salivary gland, wholly embedded in the digestive gland.
Resumo:
The sternal glands of the abdomen of Oxaea flavescens (Klug, 1807) consist of class III glandular cells around a reservoir constituted by branched folds of the intersegmental membrane of segments III, IV and V. The gland cells are rich in rough endoplasmic reticulum and produce a secretion with mucous aspect. The treatment with oxidated osmium and ruthenium red showed numerous Golgi regions in the cell and carbohydrates absorption from the haemolymph, respectively. The high degree of development of the glands suggests an important function to the species, although still unknown.
Resumo:
A detailed preliminary histological analysis of Helobdella hyalina Ringuelet, 1942 male system from Los Talas, Buenos Aires, Argentina is described. Six pairs of testisacs, located between the crop caeca, form the male reproductive system. Each testisac is clothed by the mesotelium. Inside it, the germinal cells are connected to the citophore and develop functional unit called poliplast. The spermatozoa are released into testisacs after the reabsortion of the citophore. Five stages of spermatogenesis are described taking into account the successive maturation stages of germinal cells and the changes in the citophore size. Lining cells and gland cells were found in the seminal vesicle. Five different types of gland cells are placed inside the ejaculatory ducts, as well as two kinds of cells are found in its distal portion: type 1, which produces eosinophilic granular secretion, type 2, with amorphous and slightly eosinophilic. Three distinct gland cells are located in the proximal portion of the duct: type 3, which produces a strongly eosinophilic granular secretion; type 4, with a negative eosinophilic amorphous secretion and type 5, with a basophilic granular secretion. Type 5 gland cells are described for the ducts of this species only.
Resumo:
The authors summarize the results of former works, based on the technics of parabiosis. After parabiotic union of two infantile rats, normal + castrate, the normal fellow enters into precocious puberty in about 7 days (Kallas). In the case of pairs: castrated male + normal female, the implants of testicles, or injection of maceration or aqueous extracts of testis in the castrated fellow, prevents the induction of early puberty in the normal female. In the case: castrated female + normal female, no inhibiting effect is provoked by that treatment. There is therefore a testicular hormone that regulates the hypophysis. After castration, this gland manifests a hyper-function and shows histological alterations, the chief character of these being the appearing in the anterior lobe, of the so-called castration cells, probably originated from basophile cells. Implants or injections of testis material prevent those alterations. This is a useful test; the effect is controlled by estimating the castration cells in the microscopic field. The testicular hormone that regulates the anterior lobe is probably another one, quite different from that which regulates the accessory genitalia. On account of the facts and experiments, it may be assumed that this new hormone is elaborated by the germinal epithelium of the testicles.
Resumo:
The following is a summary of the studies made on the development of Plasmodium gallinaceum sporozoites inoculated into normal chicks. Initially large numbers of laboratory reared Aëdes aegypti were fed on pullets heavily infected with gametocytes. Following the infectious meal the mosquitoes were kept on a diet of sugar and water syrup until the appearance of the sporozoites in the salivary glands. Normal chicks kept in hematophagous arthropod proof cages were then inoculated either by bite of the infected mosquitoes or by subcutaneous inoculations of salivary gland suspensions. By the first method ten mosquitoes fed to engorgement on each normal chick and were then sacrificed immediately afterwards to determine the sporozoite count. By the second method five pairs of salivary glands were dissected out at room temperature, triturated in physiological saline and inoculated subcutaneously. The epidermis and dermis at the site of inoculation were excised from six hours after inoculation to forty eight hours after appearance of the parasites in the blood stream and stretched out on filter paper with the epithelial surface downward. The dermis was then curretted. Slides were made of the scrapings consisting of connective tissue and epithelial cells of the basal layers which were fixed by metyl alcohol and stained with Giemsa for examination under the oil immersion lens. Skin fragments removed from normal chicks and from regions other than the site of inoculation in the infected chicks were used as controls. In these, only the normal histological aspect was ever encountered. In the biopsy made at the earliest period following inoculation clearly defined elongated forms with eight or more chromatin granules arranged in rosary formation were found. The author believes these to be products of the sporozoite evolution. Search for transition stages between these forms and sporozoites is planned in biopsies to be taken immediately following inoculation and at given intervals up to the six hour period. 1.) 6 and 12 hour periods. The bodies referred to above found in the first period in great abundance, apparently in proportion to the large numbers of sporozoites inoculated, were perceptibly reduced in numbers in the second period. 2.) 18 hour period. Only one biopsy was examined. This presented a binuclear body shown in Fig. 1, having a more or less hyaline protoplasm staining an intense blue and a narrow vacuole delimiting the cell boundaries. The two chromatin grains were quite large presenting a clearly defined nuclear texture. 3.) 24 hour period. A similar body to that above (Fig. 2) was seen in the only preparation examined. 4.) 60 hour period. The exoerythrocytic schizonts were found more frequently from this period onward. Several such were found no longer to contain the previously described vacuoles (Fig. 3). 5.) 84 hour period. Cells bearing eight or more schizonts were frequently encountered here. That these are apparently not bodies in process of division may be seen in Fig. 4. From this time onward small violet granules similar to volutine grains appeared constantly in the schizont nucleus and protoplasm. These are definitely not hemozoin. The above observations fell within the incubation period as repeated examinations of the peripheral and visceral blood were negative. Exoery-throcytic parasites also were never encountered in the viscera at this time. Exoerythrocytic schizonts searched for at site of inoculation 1, 24 and 48 hours after the incubation period were present in large number at all three times with apparent tendency to diminish as the number within the blood stream increased. Many of them presented the violet granules mentioned above. The appearance of the chromatin and the intensity of staining of the protoplasm varied from body to body which doubtless corresponds to the evolutionary stage of each. This diversity of aspect may frequently be seen in the parasites of the same host cell (Fig. 5.). These findings lend substance to the theory that the exoerythrocytic forms are the link between the sporozoites and the pigmented parasites of the red blood corpuscles. The explanation of their continued presence in the organism after infection of the blood stream takes place and their presence in cases infected by the inoculation blood does not come within the scope of this work. Large scale observations shortly to be undertaken will be reported in more detail particularly observations on the first evolutionary phases of the sporozoite within the organism of the vertebrate host.
Resumo:
The A. A. have observed a hemorrhagic cyst-adenocacinoma of the mammary gland of mouse. This malignant tumor shows atipical, it is composed almost entirely of large cuboidal epithelial cells, which possess eosinophilic cytoplasm and generally hyperchromatic nuclei. There is a acinouslike structure. One can find many hemorragic areas, which form cyst-like blood filled spaces.
Resumo:
Among the material of the archives of the Pathological Section of the Oswaldo Cruz Institue (Rio de Janeiro, Brasil) we found 9 cases of cancer metastasis in the spleen. Four of them were macroscopically apparent, but five had only been diagnosed microscopically. Of these cases of tumors, 3 are adenocarcinoma originated from the pancreas (cases 1, 3, 5,); 3 are primary carcinoma of stomach (cases 7,8 and 9); 1 adenocarcinoma of gall-bladder (case 2); 1 originated form the mammary gland (case 4) and finally 1 form the colon. (case 6.). The incidence of the metastasis observed in the spleen among the total of 6.400 studied autopsies is of 0,14%; The same incidence among those of epithelial blastomata is of 1,8%.
Resumo:
One of the features of pneumococcus which has deserved the attention of investigators is the capsule. Since Pasteur, Chamberland and Roux (1881) several functions have been ascribed to it as well as peculiar properties. In the present paper, we take into consideration one only aspect of this problem; it is the relationship which there possibly may be between acidity of the culture medium and the power of capsule formation by pneumococcus. As it is known, this germ requires for its development 7.8 as an optimum pH, but maintains its biological activities down to 5.6. These variations do not take place without large alterations, particularly of the capsule, not only from the morphological but also from the chemical viewpoint. The diameter of the mucous envelopment of the pneumococcus decreases in proportion to the increase of acidity down to its complete extinction. This fact has been regarded by investigators as a biological feature inhe¬ring to the germ itself and as proceeding of self-defense. In an acid medium the existing capsule is destroyed and the germ does not produce it again; consequently, acidity inhibits the formation of the capsule. We tried to check how this phenomenon comes to pass and to elucidated it. As we know, the fundamental compound of the pneumococcus capsule is mucin. In the first place, we experimented the action of acidity on same in the following manner: Mucin extracted from bovine submaxillary gland is precipitated by HC1 at a determined concentration degree; the mucin dissolves again and precipi¬tates in function of this concentration. This property of mucin (solubility in acid medium) modifies a little the interpretation of the mechanism of disappearance of the capsule from the said germ in the culture medium. Indeed: The acidification of the medium consecutive to the growth of pneumococcus reduces the dimensions of the capsule until causing its com¬plete disappearance; but on transferring this strain to new optimum cultiva¬ting conditions the capsule appears again exhuberantly, at times as anteriorly, although with biased virulence. Linking these two facts we draw the following conclusions: Pneumo¬coccus does not lose its capacity of capsule formation in an acid medium; but mucin, whilst being produced, is entirely dissolved in this medium by the aid of acidity; we venture to state that, in spite of medium acidity, the capacity of capsule production is a constant feature of pneumococcus and that the disappearance of the capsule does not depend on the pneumococcus in itself when it produces smooth colonies, but on the chemical properties of mucin, mainly on its solubility in acid medium.
Resumo:
A morphological study was done on A. nigricans, based on the observation of shell, radula, renal region and genitalia of 50 specimens measuring 18 mm in diameter. The data obtained are to be compared with those recorded in our previous paper (PARAENSE & DESLANDES, 1955) on A. glabratus. The characteristics common to both species will not be mentioned here. The numerals refere to the means and their standard deviations: no special reference being done, they correspond to length measurementes. Shell - 18 mm in diameter, 6.37 ± 0.29 mm in greatest width, 6 whorls. Prevailing colur ferruginous sepia, a minority of olivaceous, ochreous, nigrescent and deeply black specimens being found. Right side variously depressed, umbilicated, 1.5 to 3.5 mm deep from the bottom of the umblicus to the highest level of the last whorl. Left side more depressed than the right one, broadly concave, 1.5 to 3.5 mm deep. Both sides show a varously distinct keel, that looks sharper at the left. Aperture deltoid, varying in outline and width. Body, extended - 60.26 ± 3.62 mm, less pigmented than in glabratus. Renal tube - 30.68 ± 1.69 mm, showing neither ridge nor pigmented line along its ventral surface, this negative character affording a sure means of separation from glabratus. Ovotestis - 14.48 ± 1.93 mm. Ovisperm duct - 13.04 ± 1.60 mm, including the non-unwound seminal vesicle. The latter was 0.97 ± 0,21 mm in greatest width. Carrefour - Resembling that of glabratus. Sperm duct - 21.36 ± 1.53 mm. Prostate - Prostate duct 7.14 ± 0.74 mm, collecting a row of long diverticula numbering 19.6 ± 3.1 and more separate than in glabratus. Last diverticulum generally bifurcate or arborescent, the remaining ones arborescent. Vas deferens - 28.68 ± 1.38. Ratio vas deferens/vergic sac = 6.8±0.8. Verge - 3.08 ± 0.28 mm long, 0.11 ± 0.02 mm wide. Vergic sac - 3.07 ± 0.28 mm long, about 0.20 mm wide. Ratio vergic sac/preputium = 0.84 ± 0.12. Preputium - 3.69 ± 0.47 mm long, 0.85 ± 0.10 mm wide. Albumen gland - Resembling taht of glabratus. Oviduct - 16.26 ± 1.41 mm, swollen at the cephalic end. Uterus - 13.24 ± 1.19 mm. Vagina - 1.70 ± 0.22 mm, swolen at the caudal portion. Spermatheca - 2.78 ± 0.40 mm long, 0.86 ± 0.16 mm wide. Spermathecal duct 1.11 ± 0.20 mm. Radula - 125 to 168 horizontal rows of teeth (mean 153.9 ± 8.4). Radula formula 28-1-28 to 36-1-36 (mean 31.8 ± 1.9). Mode formula 31-1-31. The morphological characteristics of the renal region and shell, and the great body length in the same condition of shell diameter, distinguish A. nigricans from the most related species A. glabratus, giving support to considering it a good species from a txonomic or phenotypic standpoint (morphospecies).
Resumo:
The specific activities of acid phosphatase, alkaline phosphatase, β-glucuronidase, lysozymes, glutamate-oxalacetate transaminase and glutamate-pyruvate transaminate were determined in the head-foot and digestive gland of Brazilian Biomphalaria glabrata (Touros), B. tenagophila (Caçapava) and B. straminea (Monsenhor Gil). All six enzymes were detected inthe 3000g supernatant. Both cytoplasmic enzymes, glutamate-oxalacetate and glutamate-pyruvate transaminase exhibited the highest specific activities. In the case of the four hydrolytic enzymes assayed, β-glucuronidase exhibited the highest specific activity while lysozyme showed the lowest activity. All six enzymes are thought to be produced by cells within the head-foot and digestive gland of B. glabrata, B. tenagophila and B. straminea.
Resumo:
A new species of South American lymnaeid snail, Lymnaea rupestris, is described. So far it has been found only in its type-locality, Nova TeuTõnia, a village in the municipality of Seara (27° 07' S, 52° 17' W), state of Santa Catarina, Brazil. It is distinguishable, by characteristics of the shell and internal organs, from the other two lymnaeid species known to occur in the area, Lymnaea columella and L. viatrix. Its shell has 4 markedly shouldered whorls, deep suture, ovoid or rounded aperture occupying about half the length of the shell, and reaches about 6 mm in length in adults; in columella and viatrix the shell has 4-5 rounded whorls, shallow suture, and reaches over 10 mm in adults; the aperture is ovoid, occupying about half the length of the shell in viatrix, about two thirds in columella. Anatomically it is readily separated from L. columella by the shape of the ureter, straight in rupestris, with a double flexure in columella. Comparison with L. viatrix shows the following main differences: distalmost portion of the oviduct with a low, caplike lateral swelling in rupestris, with a well-developed pouch in viatrix; uterus bent abruptly caudalward in rupestris, only slightly curved rightward in viatrix; basal half of the spermathecal duct hidden by the prostate in rupestris, wholly visible or nearly so in viatrix; spermiduct sinuous and uniformly wide in rupestris, straight and gradually narrowing in viatrix; prostate more than half as long and nearly as wide as the nidamental gland, and with a slit-like lumen in cross-section in rupestris, less than half as long as and much narrower than the nidamental gland, and with an inward fold in cross-section in viatrix; penial sheath about as long and as wide as the prepuce in rupesris, shorter and narrower than the prepuce in viatrix. An important ecological characteristic of L. rupestris is its habitat on wet rocks most often outside bodies of water, although in close proximity to them. Specimens were deposited in the following malacological collections: Instituto OswaldoCruz, Rio de Janeiro; Academy of Natural Sciences, Philadelphia; Museum of Zoology, University of Michigan; and British Museum (Natural History).