959 resultados para Drop


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IGBT has become the device of choice in many high-voltage-power electronic applications, by virtue of combining the ease of MOS gate control with an acceptable forward voltage drop. However, designers have retained an interest in MOS gated thyristor structures which have a turn-off capability. These offer low on-state losses as a result of their latching behaviour. Recently, there have been various proposals for dual-gate devices that have a thyristor on-state with IGBT-like switching. Many of these dual gated structures rely on advanced MOS technology, with inherent manufacturing difficulties. The MOS and bipolar gated thyristor offers all the advantages of dual gated performance, while employing standard IGBT processing techniques. The paper describes the MBGT in detail, and presents experimental and simulation results for devices based on realistic commercial processes. It is shown that the MBGT represents a viable power semiconductor device technology, suitable for a diverse range of applications. © IEE, 1998.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual approach to compressor design considers uniform inlet flow characteristics. Especially in aircraft applications, the inlet flow is quite often non uniform, and this can result in severe performance degradation. The magnitude of this phenomenon is amplified in military engines due to the complexity of inlet duct configurations and the extreme flight conditions. CFD simulation is an innovative and powerful tool for studying inlet distortions and can bring this inside the very early phases of the design process. This project attempts to study the effects of inlet flow distortions in an axial flow compressor trying to minimize the use computer resources and computational time. The first stage of a low bypass ratio compressor has been analyzed and its clean and distorted performance compared outlining the principal changes due to uneven flow distribution: drop in mass flow, increase in pressure and temperature ratios, decrease in surge margin. Three different studies have then been conducted to better understand the effects of the level, the type and the frequency of the distortion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between a high-pressure rotor and a downstream vane is dominated by vortex-blade interaction. Each rotor blade passing period two co-rotating vortex pairs, the tip-leakage and upper passage vortex and the lower passage and trailing shed vortex, impinge on, and are cut by, the vane leading edge. In addition to the streamwise vortex the tip-leakage flow also contains a large velocity deficit. This causes the interaction of the tip-leakage flow with a downstream vane to differ from typical vortex blade interaction. This paper investigates the effect these interaction mechanisms have on a downstream vane. The test geometry considered was a low aspect ratio second stage vane located within a S-shaped diffuser with large radius change mounted downstream of a shroudless high-pressure turbine stage. Experimental measurements were conducted at engine-representative Mach and Reynolds numbers, and data was acquired using a fast-response aerodynamic probe upstream and downstream of the vane. Time-resolved numerical simulations were undertaken with and without a rotor tip gap in order to investigate the relative magnitude of the interaction mechanisms. The presence of the upstream stage is shown to significantly change the structure of the secondary flow in the vane and to cause a small drop in its performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the effect of the rotor tip on the casing heat load of a transonic axial flow turbine. The aim of the research is to understand the dominant causes of casing heat-transfer. Experimental measurements were conducted at engine-representative Mach number, Reynolds number and stage inlet to casing wall temperature ratio. Time-resolved heat-transfer coefficient and gas recovery temperature on the casing were measured using an array of heat-transfer gauges. Time-resolved static pressure on the casing wall was measured using Kulite pressure transducers. Time-resolved numerical simulations were undertaken to aid understanding of the mechanism responsible for casing heat load. The results show that between 35% and 60% axial chord the rotor tip-leakage flow is responsible for more than 50% of casing heat transfer. The effects of both gas recovery temperature and heat transfer coefficient were investigated separately and it is shown that an increased stagnation temperature in the rotor tip gap dominates casing heat-transfer. In the tip gap the stagnation temperature is shown to rise above that found at stage inlet (combustor exit) by as much as 35% of stage total temperature drop. The rise in stagnation temperature is caused by an isentropic work input to the tip-leakage fluid by the rotor. The size of this mechanism is investigated by computationally tracking fluid path-lines through the rotor tip gap to understand the unsteady work processes that occur. Copyright © 2005 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarization-insensitivity is achieved in a reflective spatial light modulator by laying a quarter-wave plate (QWP) at the incident wavelength directly over the mirror pixels of a silicon backplane, and forming a nematle Fréedrickcz cell over the QWP to modulate the reflected phase. To achieve the highest drive voltage from the available silicon process, a switched voltage common front electrode design is described, with variable amplitude square wave drive to the pixels to maintain constant root-mean-square drive and minimize phase fluctuations during the dc balance refresh cycle. The silicon has been fabricated and liquid-crystal-on-silicon cells both with and without the QWP assembled; applications include optically transparent switches for optical networks, beam steering for add-drop multiplexers for wavelength-division- multiplexing telecommunications, television multicast, and holographic projection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work explored the use of industrial drop-on-demand inkjet printing for masking steel surfaces on engineering components, followed by chemical etching, to produce patterned surfaces. A solvent-based ink was printed on to mild steel samples and the influences of substrate topography and substrate temperature were investigated. Contact angle measurements were used to assess wettability. Regular patterns of circular spots (∼60 /on diameter) and more complex mask patterns were printed. Variation of the substrate temperature had negligible effect on the final size of the printed drops or on the resolution achieved. Colored optical interference fringes were observed on the dried ink deposits and correlated with film thickness measurements by whitelight interferometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the performance of diode temperature sensors when operated at ultra high temperatures (above 250°C). A low leakage Silicon On Insulator (SOI) diode was designed and fabricated in a 1 μm CMOS process and suspended within a dielectric membrane for efficient thermal insulation. The diode can be used for accurate temperature monitoring in a variety of sensors such as microcalorimeters, IR detectors, or thermal flow sensors. A CMOS compatible micro-heater was integrated with the diode for local heating. It was found that the diode forward voltage exhibited a linear dependence on temperature as long as the reverse saturation current remained below the forward driving current. We have proven experimentally that the maximum temperature can be as high as 550°C. Long term continuous operation at high temperatures (400°C) showed good stability of the voltage drop. Furthermore, we carried out a detailed theoretical analysis to determine the maximum operating temperature and exlain the presence of nonlinearity factors at ultra high temperatures. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experiment was conducted in the laboratory condition to determine the effect of organic (poultry drop, cow dung and mustard oil cake) and inorganic fertilizer (urea) on production, reproduction rate and maturation time of Moina species. Production rate was also determined in both aerated and non-aerated system in plastic containers with carrying capacity of 2.5-liter each. Total production was significantly higher in both aerated (2475 individuals/2.5 l water) and non-aerated (3253 individuals/2.5 l water) containers using poultry manure compared to other fertilizers. Moreover, the reproduction rate and maturation time in poultry drops showed distinct efficacy in Moina species. Reproduction rate of 11 individuals was the maximal while lowest maturation time was found 78 hours. Reproduction and maturation were induced surprisingly in test tube where the aeration system was absent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation on the seasonal distribution and abundance of various major taxa of phyto and zooplankton and the corresponding physico-chemical characteristics were carried out in four selected stations between the latitude 22°35.494N N-23°23.987 N and longitude 90°35.793 E- 90°49.061 E of the Meghna river system, Bangladesh. Drop count method was followed for the qualitative and quantitative analysis of both phyto- and zooplankton. A total of 41 phytoplankton genera belonging to 17 families and 13 zooplankton genera belonging to 11 families were recorded. Zooplankton growth cycle was noticeably less (3.0%) than the phytoplankton abundance almost throughout the study period. Quantity of plankton registered to increase chronologically from the upper to lower stretches of the river. During summer investigation the load of phytoplankton was recorded maximum (11,300-51,850 No/1). Ratio-wise quantitative difference between zoo- and phytoplankton in composition of the total standing crop fluctuated between 1.0:5.5 and 1:1037. Among the phytoplanktonic groups, Chlorophyceae was found to be dominating (95.0%) in all sampling stations. Protococcus, a single genus of Chlorophyceae played a unique role during summer, contributing the highest density of about 74.0%. The pattern of qualitative and quantitative difference of plankton standing crop in different sampling sites can be attributed to the existing physico-chemical characteristics, mainly water temperature, pH and hardness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

mark Unsteady ejectors can be driven by a wide range of driver jets. These vary from pulse detonation engines, which typically have a long gap between each slug of fluid exiting the detonation tube (mark-space ratios in the range 0.1-0.2) to the exit of a pulsejet where the mean mass flow rate leads to a much shorter gap between slugs (mark-space ratios in the range 2-3). The aim of this paper is to investigate the effect of mark-space ratio on the thrust augmentation of an unsteady ejector. Experimental testing was undertaken using a driver jet with a sinusoidal exit velocity profile. The mean value, amplitude and frequency of the velocity profile could be changed allowing the length to diameter ratio of the fluid slugs L/D and the mark-space ratio (the ratio of slug length to the spacing between slugs) L/S to be varied. The setup allowed L/S of the jet to vary from 0.8 to 2.3, while the L/D ratio of the slugs could take any values between 3.5 and 7.5. This paper shows that as the mark-space ratio of the driver jet is increased the thrust augmentation drops. Across the range of mark-space ratios tested, there is shown to be a drop in thrust augmentation of 0.1. The physical cause of this reduction in thrust augmentation is shown to be a decrease in the percentage time over which the ejector entrains ambient fluid. This is the direct result ofthe space between consecutive slugs in the driver jet decreasing. The one dimensional model reported in Heffer et al. [1] is extended to include the effect of varying L/S and is shown to accurately capture the experimentally measured behavior ofthe ejector. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of varying corona surface treatment on ink drop impact and spreading on a polymer substrate have been investigated. The surface energy of substrates treated with different levels of corona was determined from static contact angle measurement by the Owens and Wendt method. A drop-on-demand print-head was used to eject 38 μm diameter drops of UV-curable graphics ink travelling at 2.7 m/s on to a flat polymer substrate. The kinematic impact phase was imaged with a high speed camera at 500k frames per second, while the spreading phase was imaged at 20k frames per secoiui. The resultant images were analyzed to track the changes in the drop diameter during the different phases of drop spreading. Further experiments were carried out with white-light intetferometry to accurately measure the final diameter of drops which had been printed on different corona treated substrates and UV cured. The results are correlated to characterize the effects of corona treatment on drop impact behavior and final print quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims to provide insight into the parameters affecting practical laminar-flow-control suction power requirements for a commercial laminar-flying-wing transport aircraft. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient; hence, to a good approximation, the power penalty is given by the product of the optimal suction flow rate coefficient and the average skin pressure drop. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, if there are fewer pumps than chambers, the average pressure drop from the aerofoil surface to the pump collector ducts, rather than to the chambers, determines the power penalty. For the representative laminar-flying-wing aircraft parameters considered here, the minimum power associated with boundary-layer losses alone contributes some 80-90% of the total power requirement. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the edible crabs, Podophthalmus vigil occupies a distinct position in Porto Novo coast. Though the fishery is seasonal, P. vigil supports an additional crab fishery from august to october. An attempt has been made to evaluate the nutritional status of different size groups of P. vigil. It has been observed that protein and moisture values are more in smaller crabs, corresponding with a drop in carbohydrate and fat. In bigger size groups, the values of fat and carbohydrate are found to be higher, while protein and moisture contents decreased slightly. The total meat content varies in different crabs of the same size group and the average value of the total consumable part is found to be only less than 30% of the total weight of the animal.