825 resultados para Dominant mechanism
Resumo:
Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.
Resumo:
Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10^10 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
This paper examines the ethics of the Clean Development Mechanism (CDM) in its architecture, processes and outcomes and its potential to allocate resources to the poor as ‘ethical development’. Two specific examples of CDM projects help us to explore some of the quandaries that seem to be quickly defining operating procedure for the CDM in its efforts to bring entitlementsto the poor. The paper concludes with reflections on the normative and social complications of the CDM and closes with three key areas of further investigation.
Resumo:
Global agreements have proliferated in the past ten years. One of these is the Kyoto Protocol, which contains provisions for emissions reductions by trading carbon through the Clean Development Mechanism (CDM). The CDM is a market-based instrument that allows companies in Annex I countries to offset their greenhouse gas emissions through energy and tree offset projects in the global South. I set out to examine the governance challenges posed by the institutional design of carbon sequestration projects under the CDM. I examine three global narratives associated with the design of CDM forest projects, specifically North – South knowledge politics, green developmentalism, and community participation, and subsequently assess how these narratives match with local practices in two projects in Latin America. Findings suggest that governance problems are operating at multiple levels and that the rhetoric of global carbon actors often asserts these schemes in one light, while the rhetoric of those who are immediately involved locally may be different. I also stress the alarmist’s discourse that blames local people for the problems of environmental change. The case studies illustrate the need for vertical communication and interaction and nested governance arrangements as well as horizontal arrangements. I conclude that the global framing of forests as offsets requires better integration of local relationships to forests and their management and more effective institutions at multiple levels to link the very local to the very large scale when dealing with carbon sequestration in the CDM.
Resumo:
MD simulation studies showing the influence of porosity and carbon surface oxidation on phenol adsorption from aqueous solutions on carbons are reported. Based on a realistic model of activated carbon, three carbon structures with gradually changed microporosity were created. Next, a different number of surface oxygen groups was introduced. The pores with diameters around 0.6 nm are optimal for phenol adsorption and after the introduction of surface oxygen functionalities, adsorption of phenol decreases (in accordance with experimental data) for all studied models. This decrease is caused by a pore blocking effect due to the saturation of surface oxygen groups by highly hydrogen-bounded water molecules.
Resumo:
The canonical pathway of regulation of the germinal centre kinase (GCK) III subgroup member, mammalian Sterile20-related kinase 3 (MST3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178-), induction of Ser-/Thr-protein kinase activity and nuclear localisation. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein, GOLGA2/gm130. Activation of MST3 by calyculin A (a protein Ser-/Thr- phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178-) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328-) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr178-) phosphorylation increased MST3 kinase activity but this activity was independent of MST3(Thr328-) phosphorylation. Interestingly, MST3(Thr328-) lies immediately C-terminal to a STRAD pseudokinase-like site recently identified as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178- /Thr328-) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328-) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.
Resumo:
Government policies have backed intermediate housing market mechanisms like shared equity, intermediate rented and shared ownership (SO) as potential routes for some households, who are otherwise squeezed between the social housing and the private market. The rhetoric deployed around such housing has regularly contained claims about its social progressiveness and role in facilitating socio-economic mobility, centring on a claim that SO schemes can encourage people to move from rented accommodation through a shared equity phase and into full owner-occupation. SO has been justified on the grounds of it being transitional state, rather than a permanent tenure. However SO buyers may be laden with economic cost-benefit structures that do not stack up evenly and as a consequence there may be little realistic prospect of ever reaching a preferred outcome. Such behaviours have received little empirical attention as yet despite, the SO model arguably offers a sub-optimal solution towards homeownership, or in terms of wider quality of life. Given the paucity of rigorous empirical work on this issue, this paper delineates the evidence so far and sets out a research agenda. Our analysis is based on a large dataset of new shared owners, observing an information base that spans the past decade. We then set out an agenda to further examine the behaviours of the SO occupants and to examine the implications for future public policy based on existing literature and our outline findings. This paper is particularly opportune at a time of economic uncertainty and an overriding ‘austerity’ drive in public funding in the UK, through which SO schemes have enjoyed support uninterruptedly thus far.
Resumo:
Most research on corporate responsibility (CR) has investigated CR from the perspective of organizations, often focusing on how organizations define, manage and implement CR to gain benefits or competitive advantage. The benefits of CR for organizations are, however, often said to be achieved through increased support of stakeholders. Despite this, limited attention has been given to understanding CR from the perspective of stakeholders and, in particular, the mechanism by which CR drives stakeholder support. This study addresses this deficit. Building on advances in the application of psychological theories to the field of management, the research develops and empirically tests a theoretical model of how CR-related experiences and beliefs drive stakeholder trust and positive intent. The research is conducted with customers (n = 708) and employees (n = 359) of a service organization in the UK that introduced a range of CR-related activities into their business. The findings contribute to literature by empirically demonstrating (a) the impact of CR-related experiences on the development of beliefs about, and trust towards, the organization; (b) the importance of ‘others-related’ CR experiences even in the presence of ‘self-related’ CR experiences; and (c) the role of beliefs as partial mediators in how experiences of CR, both ‘self-related’ and ‘others-related’, translate into trust and positive intent.