940 resultados para Distance-based techniques
Resumo:
ABSTRACT In several arthropod groups, male genitalia is the most important feature for species identification, especially in cryptic species. Cryptic species are very common in the Drosophila genus, and the Neotropical Drosophila willistoni species group is a good example. This group currently includes 24 species divided into three subgroups: alagitans, bocainensis and willistoni. There are six sibling species in the willistoni subgroup – D. willistoni, D. insularis, D. tropicalis, D. equinoxialis, D. pavlovskiana and D. paulistorum, which is a species complex composed of six semispecies – Amazonian, Andean-Brazilian, Centroamerican, Interior, Orinocan and Transitional. The objective of this study was to characterize male genitalia of the willistoni subgroup, including the D. paulistorum species complex, using scanning electron microscopy and light microscopy. We also tried to contribute to the identification of these cryptic species and to add some comments about evolutionary history, based on male genitalia characters. Despite being cryptic species, some differences were found among the siblings, including the Drosophila paulistorum semispecies.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
Several ink dating methods based on solvents analysis using gas chromatography/mass spectrometry (GC/MS) were proposed in the last decades. These methods follow the drying of solvents from ballpoint pen inks on paper and seem very promising. However, several questions arose over the last few years among questioned documents examiners regarding the transparency and reproducibility of the proposed techniques. These questions should be carefully studied for accurate and ethical application of this methodology in casework. Inspired by a real investigation involving ink dating, the present paper discusses this particular issue throughout four main topics: aging processes, dating methods, validation procedures and data interpretation. This work presents a wide picture of the ink dating field, warns about potential shortcomings and also proposes some solutions to avoid reporting errors in court.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier transform of the image and, finally, others are computed from the image where cloudy pixels are distinguished from clear-sky pixels. The use of the most suitable features in an automatic classification algorithm is also shown and discussed. Both the features and the classifier are developed over images taken by two different camera devices, namely, a total sky imager (TSI) and a whole sky imager (WSC), which are placed in two different areas of the world (Toowoomba, Australia; and Girona, Spain, respectively). The performance of the classifier is assessed by comparing its image classification with an a priori classification carried out by visual inspection of more than 200 images from each camera. The index of agreement is 76% when five different sky conditions are considered: clear, low cumuliform clouds, stratiform clouds (overcast), cirriform clouds, and mottled clouds (altocumulus, cirrocumulus). Discussion on the future directions of this research is also presented, regarding both the use of other features and the use of other classification techniques
Resumo:
Long-chain alkanes are a major component of crude oil and therefore potentially good indicators of hydrocarbon spills. Here we present a set of new bacterial bioreporters and assays that allow to detect long-chain alkanes. These reporters are based on the regulatory protein AlkS and the alkB1 promoter from Alcanivorax borkumensis SK2, a widespread alkane degrader in marine habitats. Escherichia coli cells with the reporter construct reacted strongly to octane in short-term (6 h) aqueous suspension assays but very slightly only to tetradecane, in line with what is expected from its low water solubility. In contrast, long-term assays (up to 5 days) with A. borkumensis bioreporters showed strong induction with tetradecane and crude oil. Gel-immobilized A. borkumensis reporter cells were used to demonstrate tetradecane and crude oil bioavailability at a distance from a source. Alcanivorax borkumensis bioreporters induced fivefold more rapid and more strongly when allowed physical contact with the oil phase in standing flask assays, suggesting a major contribution of adhered cells to the overall reporter signal. Using the flask assays we further demonstrated the effect of oleophilic nutrients and biosurfactants on oil availability and degradation by A. borkumensis. The fluorescence signal from flask assays could easily be captured with a normal digital camera, making such tests feasible to be carried out on, e.g. marine oil responder vessels in case of oil accidents.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
The current operational very short-term and short-term quantitative precipitation forecast (QPF) at the Meteorological Service of Catalonia (SMC) is made by three different methodologies: Advection of the radar reflectivity field (ADV), Identification, tracking and forecasting of convective structures (CST) and numerical weather prediction (NWP) models using observational data assimilation (radar, satellite, etc.). These precipitation forecasts have different characteristics, lead time and spatial resolutions. The objective of this study is to combine these methods in order to obtain a single and optimized QPF at each lead time. This combination (blending) of the radar forecast (ADV and CST) and precipitation forecast from NWP model is carried out by means of different methodologies according to the prediction horizon. Firstly, in order to take advantage of the rainfall location and intensity from radar observations, a phase correction technique is applied to the NWP output to derive an additional corrected forecast (MCO). To select the best precipitation estimation in the first and second hour (t+1 h and t+2 h), the information from radar advection (ADV) and the corrected outputs from the model (MCO) are mixed by using different weights, which vary dynamically, according to indexes that quantify the quality of these predictions. This procedure has the ability to integrate the skill of rainfall location and patterns that are given by the advection of radar reflectivity field with the capacity of generating new precipitation areas from the NWP models. From the third hour (t+3 h), as radar-based forecasting has generally low skills, only the quantitative precipitation forecast from model is used. This blending of different sources of prediction is verified for different types of episodes (convective, moderately convective and stratiform) to obtain a robust methodology for implementing it in an operational and dynamic way.
Resumo:
The co-occurrence of PTSD and of substance use disorder (SD) is known to be very high. However the question of whether and how to treat such patients remains largely unanswered in the EMDR community. We report on two cases of EMDR-based treatment of heavily affected SD patients in whom psychotraumatic antecedents were identified. EMDR sessions focused on trauma-related material and not on the expression of cue-induced drug craving. The treatment appeared to be a difficult and challenging endeavour. However, some beneficial effects on general comfort and on drug consumption could be observed. A long stabilization phase was mandatory and the standard EMDR protocol needed to be conducted with much flexibility. Interestingly, there was no provocation of a prolonged psychological crisis or of relapse. Experiencing of emotional stress could be limited to the sessions and dissociation could be absorbed with specific well-known techniques without permanently increasing drug craving. These observations are discussed in relation to previously published concepts of using EMDR in the field of trauma and substance abuse.
Resumo:
ABSTRACT: BACKGROUND: Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have shown that a patient's antibody reaction in a confirmatory line immunoassay (INNO-LIATM HIV I/II Score, Innogenetics) provides information on the duration of infection. Here, we sought to further investigate the diagnostic specificity of various Inno-Lia algorithms and to identify factors affecting it. METHODS: Plasma samples of 714 selected patients of the Swiss HIV Cohort Study infected for longer than 12 months and representing all viral clades and stages of chronic HIV-1 infection were tested blindly by Inno-Lia and classified as either incident (up to 12 m) or older infection by 24 different algorithms. Of the total, 524 patients received HAART, 308 had HIV-1 RNA below 50 copies/mL, and 620 were infected by a HIV-1 non-B clade. Using logistic regression analysis we evaluated factors that might affect the specificity of these algorithms. RESULTS: HIV-1 RNA <50 copies/mL was associated with significantly lower reactivity to all five HIV-1 antigens of the Inno-Lia and impaired specificity of most algorithms. Among 412 patients either untreated or with HIV-1 RNA ≥50 copies/mL despite HAART, the median specificity of the algorithms was 96.5% (range 92.0-100%). The only factor that significantly promoted false-incident results in this group was age, with false-incident results increasing by a few percent per additional year. HIV-1 clade, HIV-1 RNA, CD4 percentage, sex, disease stage, and testing modalities exhibited no significance. Results were similar among 190 untreated patients. CONCLUSIONS: The specificity of most Inno-Lia algorithms was high and not affected by HIV-1 variability, advanced disease and other factors promoting false-recent results in other STARHS. Specificity should be good in any group of untreated HIV-1 patients.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
We conducted a preliminary, questionnaire-based, retrospective analysis of training and injury in British National Squad Olympic distance (OD) and Ironman distance (IR) triathletes. The main outcome measures were training duration and training frequency and injury frequency and severity. The number of overuse injuries sustained over a 5-year period did not differ between OD and IR. However, the proportions of OD and IR athletes who were affected by injury to particular anatomical sites differed (p < 0.05). Also, fewer OD athletes (16.7 vs. 36.8%, p < 0.05) reported that their injury recurred. Although OD sustained fewer running injuries than IR (1.6 +/- 0.5 vs. 1.9 +/- 0.3, p < 0.05), more subsequently stopped running (41.7 vs. 15.8%) and for longer (33.5 +/- 43.0 vs. 16.7 +/- 16.6 days, p < 0.01). In OD, the number of overuse injuries sustained inversely correlated with percentage training time, and number of sessions, doing bike hill repetitions (r = -0.44 and -0.39, respectively, both p < 0.05). The IR overuse injury number correlated with the amount of intensive sessions done (r = 0.67, p < 0.01 and r = 0.56, p < 0.05 for duration of "speed run" and "speed bike" sessions). Coaches should note that training differences between triathletes who specialize in OD or IR competition may lead to their exhibiting differential risk for injury to specific anatomical sites. It is also important to note that cycle and run training may have a "cumulative stress" influence on injury risk. Therefore, the tendency of some triathletes to modify rather than stop training when injured-usually by increasing load in another discipline from that in which the injury first occurred-may increase both their risk of injury recurrence and time to full rehabilitation.