918 resultados para Dissolution kinetics
Resumo:
The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.
Resumo:
An in situ study was conducted to evaluate the effects of heat treatments on the degradation kinetics and escape protein concentrations of forages (alfalfa and berseem clover). Alfalfa collected at 4 and 7 weeks post-harvest and berseem clover collected at 5 and 7 weeks postharvest were freeze-dried and then heated to 100, 125, and 150o C for 2 hours. Heat treatment effects were determined by placing two bags of sample (for each treatment, maturity, and forage species for a given incubation times) into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. Increasing levels of heat treatments of forages increased concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent insoluble nitrogen (ADIN) and non-degradable protein (NDP), potentially degradable protein proportion (PDP), and protein escaping rumen degradation (PEP) while decreasing water soluble protein (WSP) and the rates of crude protein (CP), except immature berseem clover and cell wall (CW) degradation. PEP was greater and rate of CP degradation was lower at 100 and 150o C compared to 125o C in immature berseem clover.
Resumo:
Two consecutive in situ studies were conducted to determine the effects of maturity and frost killing of forages (alfalfa and berseem clover) on degradation kinetics and escape protein concentrations. Four maturities (3, 5, 7, and 9 weeks after second harvest) of forages collected from three locations were used to determine the effects of maturity. Four weeks after a killing frost (-2o C), berseem clover was harvested from the same locations previously sampled. To evaluate maturity, 336 DacronÒ bags containing all maturities of either alfalfa or berseem clover were placed into the rumen of two fistulated steers fed alfalfa-grass hay. Frost killing effects of berseem clover were compared with maturecut berseem clover by placing DacronÒ bags into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. With increasing maturity, the proportion of non-degradable protein (NDP) and the rate of crude protein (CP) degradation increased in both forages. While the rate of neutral detergent fiber (NDF) degradation and potentially degradable protein proportion (PDP) increased with increasing maturity in alfalfa, the rate of NDF degradation and PDP proportion decreased and proportion of water soluble protein (WSP) increased in berseem clover. The proportion of protein escaping rumen degradation (PEP) was greater in berseem clover than alfalfa, but was not affected by maturity. Frost killing of mature berseem clover decreased WSP proportion and increased PDP proportion compared to mature berseem clover harvested live. Even though ADIN concentration was higher for frost-killed berseem clover, PEP and total escape protein concentration (CEP) was also higher for frostkilled berseem clover than mature berseem clover harvested live, due to decreases in the rate of ruminal N degradation with frost-killing.
Resumo:
Stockpiled kura clover samples harvested on three different winter dates were used to determine changes in chemical composition and N digestion kinetics. Kura clover was harvested from four different plots at 14 d intervals and analyzed for neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), acid detergent insoluble nitrogen (ADIN), and in vitro digestible dry matter (IVDMD), and in situ digestion kinetics of N. Crude protein concentrations decreased, but ADIN concentrations increased with later date of harvest. Digestible N pool-size and the rate of digestion was the lowest in third-harvest kura clover. Although the proportion of protein that is soluble or nondigestible increased, proportion of protein that is potentially digestible decreased with maturity.
Resumo:
BACKGROUND Timing is critical for efficient hepatitis A vaccination in high endemic areas as high levels of maternal IgG antibodies against the hepatitis A virus (HAV) present in the first year of life may impede the vaccine response. OBJECTIVES To describe the kinetics of the decline of anti-HAV maternal antibodies, and to estimate the time of complete loss of maternal antibodies in infants in León, Nicaragua, a region in which almost all mothers are anti-HAV seropositive. METHODS We collected cord blood samples from 99 healthy newborns together with 49 corresponding maternal blood samples, as well as further blood samples at 2 and 7 months of age. Anti-HAV IgG antibody levels were measured by enzyme immunoassay (EIA). We predicted the time when antibodies would fall below 10 mIU/ml, the presumed lowest level of seroprotection. RESULTS Seroprevalence was 100% at birth (GMC 8392 mIU/ml); maternal and cord blood antibody concentrations were similar. The maternal antibody levels of the infants decreased exponentially with age and the half-life of the maternal antibody was estimated to be 40 days. The relationship between the antibody concentration at birth and time until full waning was described as: critical age (months)=3.355+1.969 × log(10)(Ab-level at birth). The survival model estimated that loss of passive immunity will have occurred in 95% of infants by the age of 13.2 months. CONCLUSIONS Complete waning of maternal anti-HAV antibodies may take until early in the second year of life. The here-derived formula relating maternal or cord blood antibody concentrations to the age at which passive immunity is lost may be used to determine the optimal age of childhood HAV vaccination.
Resumo:
To quantify the relationships between buffering properties and acid erosion and hence improve models of erosive potential of acidic drinks, a pH-stat was used to measure the rate of enamel dissolution in solutions of citric, malic and lactic acids, with pH 2.4-3.6 and with acid concentrations adjusted to give buffer capacities (β) of 2-40 (mmol·l(-1))·pH(-1) for each pH. The corresponding undissociated acid concentrations, [HA], and titratable acidity to pH 5.5 (TA5.5) were calculated. In relation to β, the dissolution rate and the strength of response to β varied with acid type (lactic > malic ≥ citric) and decreased as pH increased. The patterns of variation of the dissolution rate with TA5.5 were qualitatively similar to those for β, except that increasing pH above 2.8 had less effect on dissolution in citric and malic acids and none on dissolution in lactic acid. Variations of the dissolution rate with [HA] showed no systematic dependence on acid type but some dependence on pH. The results suggest that [HA], rather than buffering per se, is a major rate-controlling factor, probably owing to the importance of undissociated acid as a readily diffusible source of H(+) ions in maintaining near-surface dissolution within the softened layer of enamel. TA5.5 was more closely correlated with [HA] than was β, and seems to be the preferred practical measure of buffering. The relationship between [HA] and TA5.5 differs between mono- and polybasic acids, so a separate analysis of products according to predominant acid type could improve multivariate models of erosive potential.
Resumo:
The aims were to investigate the effect of monoalkyl phosphates (MAPs) and fluoride on dissolution rate of native and saliva-coated hydroxyapatite (HA). Fluoride at 300 mg/l (as NaF) inhibited dissolution of native HA by 12%, while potassium and sodium dodecyl phosphates (PDP, SDP), at 0.1% or higher, inhibited dissolution by 26-34%. MAPs, but not fluoride, also showed persistence of action. MAPs at 0.5% and fluoride at 300 mg/l were then tested separately against HA pre-treated with human saliva for 2 or 18 h. Agents were applied with brushing to half the specimens, and without brushing to the other half. In control (water-treated) specimens, pre-treatment of HA with human saliva reduced dissolution rate on average by 41% (2 h) and 63% (18 h). Brushing did not have a statistically significant effect on dissolution rate of saliva-coated specimens. In brushed specimens, fluoride significantly increased the inhibition due to 2- or 18-hour saliva pre-treatment. It is hypothesised that brushing partially removes the salivary film and allows KOH-soluble calcium fluoride formation at the surfaces of HA particles. Inhibition was reduced by PDP in 2-hour/non-brushed specimens and in 18-hour/brushed specimens. PDP did not affect dissolution rates in the remaining groups and SDP did not affect dissolution rate in any group. Possible reasons for these variable results are discussed. The experiments show that pre-treatment with saliva can significantly modify results of tests on potential anti-erosive agents and it is recommended that saliva pre-treatment should be a routine part of testing such agents.