978 resultados para Dispersion Coefficients
Resumo:
(1) The abundance and dispersion of a population of Apodemus sylvaticus was investigated with respect to tree seed availability and vegetative structure over three harvests.
Resumo:
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by approximate to 7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Popolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields. (C) 2011 American Institute of Physics. [doi:10.1063/1.3652897]
Resumo:
The propagation of electron-acoustic solitary waves and shock structures is investigated in a plasma characterized by a superthermal electron population. A three-component plasma model configuration is employed, consisting of inertial (“cold”) electrons, inertialess ? (kappa) distributed superthermal (“hot”) electrons and stationary ions. A multiscale method is employed, leading to a Korteweg-de Vries (KdV) equation for the electrostatic potential (in the absence of dissipation). Taking into account dissipation, a hybrid Korteweg-de Vries-Burgers (KdVB) equation is derived. Exact negative-potential pulse- and kink-shaped solutions (shocks) are obtained. The relative strength among dispersion, nonlinearity and damping coefficients is discussed. Excitations formed in superthermal plasma (finite ?) are narrower and steeper, compared to the Maxwellian case (infinite ?). A series of numerical simulations confirms that energy initially stored in a solitary pulse which propagates in a stable manner for large ? (Maxwellian plasma) may break down to smaller structures or/and to random oscillations, when it encounters a small-? (nonthermal) region. On the other hand, shock structures used as initial conditions for numerical simulations were shown to be robust, essentially responding to changed in the environment by a simple profile change (in width).
Resumo:
The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes') wave solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two (individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled, present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable wavenumber windows may arise simultaneously.
Resumo:
A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall- magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
Kinetic Theory and diffusion coefficients for plasma in a uniform magnetic field (Coulomb potential)