767 resultados para Diploid Alfalfa
Resumo:
A satellite DNA sequence, As120a, specific to the A-genome chromosomes in the hexaploid oat, Avena sativa L., was isolated by subcloning a fragment with internal tandem repeats from a plasmid, pAs120, that had been obtained from an Avena strigosa (As genome) genomic library. Southern and in situ hybridization showed that sequences with homology to sequences within pAs120 were dispersed throughout the genome of diploid (A and C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) Avena species. In contrast, sequences homologous to As120a were found in two A-genome species (A. strigosa and Avena longiglumis) and in the hexaploid A. sativa whereas this sequence was little amplified in the tetraploid Avena murphyi and was absent in the remaining A- and C-genome diploid species. In situ hybridization of pAs120a to hexaploid oat species revealed the distribution of elements of the As120a repeated family over both arms of 14 of 42 chromosomes of this species. By using double in situ hybridization with pAs120a and a C genome-specific probe, three sets of 14 chromosomes were revealed corresponding to the A, C, and D genomes of the hexaploid species. Simultaneous in situ hybridizations with pAs120a and ribosomal probes were used to assign the SAT chromosomes of hexaploid species to their correct genomes. This work reports a sequence able to distinguish between the closely related A and D genomes of hexaploid oats. This sequence offers new opportunities to analyze the relationships of Avena species and to explore the possible evolution of various polyploid oat species.
Resumo:
Saponins are glycosylated plant secondary metabolites found in many major food crops [Price, K. R., Johnson, I. T. & Fenwick, G. R. (1987) CRC Crit. Rev. Food Sci. Nutr. 26, 27–133]. Because many saponins have potent antifungal properties and are present in healthy plants in high concentrations, these molecules may act as preformed chemical barriers to fungal attack. The isolation of plant mutants defective in saponin biosynthesis represents a powerful strategy for evaluating the importance of these compounds in plant defense. The oat root saponin avenacin A-1 fluoresces under ultraviolet illumination [Crombie, L., Crombie, W. M. L. & Whiting, D. A. (1986) J. Chem. Soc. Perkins 1, 1917–1922], a property that is extremely rare among saponins. Here we have exploited this fluorescence to isolate saponin-deficient (sad) mutants of a diploid oat species, Avena strigosa. These sad mutants are compromised in their resistance to a variety of fungal pathogens, and a number of lines of evidence suggest that this compromised disease resistance is a direct consequence of saponin deficiency. Because saponins are widespread throughout the plant kingdom, this group of secondary metabolites may have general significance as antimicrobial phytoprotectants.
Resumo:
Spores harboring an ACC1 deletion derived from a diploid Saccharomyces cerevisiae strain, in which one copy of the entire ACC1 gene is replaced with a LEU2 cassette, fail to grow. A chimeric gene consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat cytosolic acetyl-CoA carboxylase (ACCase) cDNA, and yeast ACC1 3′ tail was used to complement a yeast ACC1 mutation. The complementation demonstrates that active wheat ACCase can be produced in yeast. At low concentrations of galactose, the activity of the “wheat gene” driven by the GAL10 promoter is low and ACCase becomes limiting for growth, a condition expected to enhance transgenic yeast sensitivity to wheat ACCase-specific inhibitors. An aryloxyphenoxypropionate and two cyclohexanediones do not inhibit growth of haploid yeast strains containing the yeast ACC1 gene, but one cyclohexanedione inhibits growth of the gene-replacement strains at concentrations below 0.2 mM. In vitro, the activity of wheat cytosolic ACCase produced by the gene-replacement yeast strain is inhibited by haloxyfop and cethoxydim at concentrations above 0.02 mM. The activity of yeast ACCase is less affected. The wheat plastid ACCase in wheat germ extract is inhibited by all three herbicides at concentrations below 0.02 mM. Yeast gene-replacement strains will provide a convenient system for the study of plant ACCases.
Resumo:
Diploid (2n = 2x = 24) Solanum species with endosperm balance number (EBN) = 1 are sexually isolated from diploid 2EBN species and both tetraploid (2n = 4x = 48, 4EBN) and haploid (2n = 2x = 24, 2EBN) S. tuberosum Group Tuberosum. To sexually overcome these crossing barriers in the diploid species S. commersonii (1EBN), the manipulation of the EBN was accomplished by scaling up and down ploidy levels. Triploid F1 hybrids between an in vitro-doubled clone of S. commersonii (2n = 4x = 48, 2EBN) and diploid 2EBN clones were successfully used in 3x × 4x crosses with S. tuberosum Group Tuberosum, resulting in pentaploid/near pentaploid BC1 progenies. This provided evidence of 2n (3x) egg formation in the triploid female parents. Two selected BC1 pentaploid hybrids were successfully backcrossed both as male and as female parents with S. tuberosum Group Tuberosum. The somatic chromosome number varied greatly among the resulting BC2 progenies, which included hyperaneuploids, but also a number (4.8%) of 48-chromosome plants. The introgression of S. commersonii genomes was confirmed by the presence of S. commersonii-specific randomly amplified polymorphic DNA markers in the BC2 population analyzed. The results clearly demonstrate the feasibility of germplasm introgression from sexually isolated diploid 1EBN species into the 4x (4EBN) gene pool of the cultivated potato using sexual hybridization. Based on the amount and type of genetic variation generated, cumbersomeness, general applicability, costs, and other factors, it would be interesting to compare the approach reported here with other in vitro or in vivo, direct or indirect, approaches previously reported.
Resumo:
Mouse clones were produced by serial nuclear transfer commencing with the transfer of four-cell nuclei at metaphase into unfertilized ooplasts. The donor four-cell-stage nuclei were synchronized in metaphase with nocodazole. The oocytes receiving a four-cell nucleus at metaphase formed two nuclei after artificial activation and inhibition of cytokinesis with cytochalasin B. To obtain embryos with diploid sets of chromosomes, nuclei from each reconstructed embryo were transferred individually into separate enucleated fertilized one-cell embryos, thus doubling the number of identical embryos. This procedure produced a high frequency of development of reconstructed embryos to the blastocyst stage. Of 11 sets of identical embryos produced by serial nuclear transplantation, 83% developed into blastocysts, including three sets of identical septuplet blastocysts. After transfer to recipient mice, a total of 25 (57%) live young were obtained, which included one set of identical sextuplet and two sets of identical quadruplet mice.
Resumo:
Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci recently doubled by polyploidy (homoeologues) has not been studied. Here we use locus-specific isolation techniques with comparative mapping to characterize the evolution of homoeologous loci in allopolyploid cotton (Gossypium hirsutum) and in species representing its diploid progenitors. We isolated and sequenced 16 loci from both genomes of the allopolyploid, from both progenitor diploid genomes and appropriate outgroups. Phylogenetic analysis of the resulting 73.5 kb of sequence data demonstrated that for all 16 loci (14.7 kb/genome), the topology expected from organismal history was recovered. In contrast to observations involving repetitive DNAs in cotton, there was no evidence of interaction among duplicated genes in the allopolyploid. Polyploidy was not accompanied by an obvious increase in mutations indicative of pseudogene formation. Additionally, differences in rates of divergence among homoeologues in polyploids and orthologues in diploids were indistinguishable across loci, with significant rate deviation restricted to two putative pseudogenes. Our results indicate that most duplicated genes in allopolyploid cotton evolve independently of each other and at the same rate as those of their diploid progenitors. These indications of genic stasis accompanying polyploidization provide a sharp contrast to recent examples of rapid genomic evolution in allopolyploids.
Resumo:
It is well known that the functional activity of the diphtheria toxin repressor DtxR is controlled by iron, which serves as an essential cofactor necessary for activation of target DNA binding by this regulatory element. In this communication, we describe the isolation and characterization of a unique series of DtxR mutants that are constitutively active and repress the expression of β-galactosidase from a diphtheria tox promoter/operator–lacZ transcriptional fusion, even in the absence of iron. These self-activating mutants of DtxR (SAD) were isolated through the use of a positive selection system for the cloning of functional dtxR alleles and target DNA operator sites. Of the four independently isolated SAD mutants that were characterized, two (SAD2 and SAD11) were found to carry a single missense mutation (E175K) in their respective C-terminal SH3-like domains. In contrast, the mutant allele encoding SAD3 was found to carry a total of six missense mutations distributed throughout the N- and C-terminal domains of the repressor. Partial diploid analysis of strains carrying both native dtxR and alleles encoding either SAD2 or SAD3 demonstrate that these iron-independent mutants possess a positive dominant phenotype in the regulation of β-galactosidase expression from a diphtheria tox promoter/operator–lacZ transcriptional fusion.
Resumo:
The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct effects of Tor proteins on nutrient-sensitive signaling pathways. The results suggest that Tor proteins directly modulate the glucose activation and nitrogen discrimination pathways and the pathways that respond to the diauxic shift (including glycolysis and the citric acid cycle). Tor proteins do not directly modulate the general amino acid control, nitrogen starvation, or sporulation (in diploid cells) pathways. Poor nitrogen quality activates the nitrogen discrimination pathway, which is controlled by the complex of the transcriptional repressor Ure2p and activator Gln3p. Inhibiting Tor proteins with rapamycin increases the electrophoretic mobility of Ure2p. The work presented here illustrates the coordinated use of genome-based and biochemical approaches to delineate a cellular pathway modulated by the protein target of a small molecule.
Resumo:
All but two genes involved in the ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been cloned, and their corresponding mutants have been described. The remaining genes encode the C-3 sterol dehydrogenase (C-4 decarboxylase) and the 3-keto sterol reductase and in concert with the C-4 sterol methyloxidase (ERG25) catalyze the sequential removal of the two methyl groups at the sterol C-4 position. The protein sequence of the Nocardia sp NAD(P)-dependent cholesterol dehydrogenase responsible for the conversion of cholesterol to its 3-keto derivative shows 30% similarity to a 329-aa Saccharomyces ORF, YGL001c, suggesting a possible role of YGL001c in sterol decarboxylation. The disruption of the YGL001c ORF was made in a diploid strain, and the segregants were plated onto sterol supplemented media under anaerobic growth conditions. Segregants containing the YGL001c disruption were not viable after transfer to fresh, sterol-supplemented media. However, one segregant was able to grow, and genetic analysis indicated that it contained a hem3 mutation. The YGL001c (ERG26) disruption also was viable in a hem 1Δ strain grown in the presence of ergosterol. Introduction of the erg26 mutation into an erg1 (squalene epoxidase) strain also was viable in ergosterol-supplemented media. We demonstrated that erg26 mutants grown on various sterol and heme-supplemented media accumulate nonesterified carboxylic acid sterols such as 4β,14α-dimethyl-4α-carboxy-cholesta-8,24-dien-3β-ol and 4β-methyl-4α-carboxy-cholesta-8,24-dien-3β-ol, the predicted substrates for the C-3 sterol dehydrogenase. Accumulation of these sterol molecules in a heme-competent erg26 strain results in an accumulation of toxic-oxygenated sterol intermediates that prevent growth, even in the presence of exogenously added sterol.
Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize
Resumo:
Comparative genetic maps of Papuan Saccharum officinarum L. (2n = 80) and S. robustum (2n = 80) were constructed by using single-dose DNA markers (SDMs). SDM-framework maps of S. officinarum and S. robustum were compared with genetic maps of sorghum and maize by way of anchor restriction fragment length polymorphism probes. The resulting comparisons showed striking colinearity between the sorghum and Saccharum genomes. There were no differences in marker order between S. officinarum and sorghum. Furthermore, there were no alterations in SDM order between S. officinarum and S. robustum. The S. officinarum and S. robustum maps also were compared with the map of the polysomic octoploid S. spontaneum ‘SES 208’ (2n = 64, x = 8), thus permitting relations to homology groups (“chromosomes”) of S. spontaneum to be studied. Investigation of transmission genetics in S. officinarum and S. robustum confirmed preliminary results that showed incomplete polysomy in these species. Because of incomplete polysomy, multiple-dose markers could not be mapped for lack of a genetic model for their segregation. To coalesce S. officinarum and S. robustum linkage groups into homology groups (composed of homologous pairing partners), they were compared with sorghum (2n = 20), which functioned as a synthetic diploid. Groupings suggested by comparative mapping were found to be highly concordant with groupings based on highly polymorphic restriction fragment length polymorphism probes detecting multiple SDMs. The resulting comparative maps serve as bridges to allow information from one Andropogoneae to be used by another, for breeding, ecology, evolution, and molecular biology.
Resumo:
Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool—as in speciation—aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.
Resumo:
During mating of Saccharomyces cerevisiae, two nuclei fuse to produce a single diploid nucleus. Two genes, KAR7 and KAR8, were previously identified by mutations that cause defects in nuclear membrane fusion. KAR7 is allelic to SEC71, a gene involved in protein translocation into the endoplasmic reticulum. Two other translocation mutants, sec63-1 and sec72Δ, also exhibited moderate karyogamy defects. Membranes from kar7/sec71Δ and sec72Δ, but not sec63-1, exhibited reduced membrane fusion in vitro, but only at elevated temperatures. Genetic interactions between kar7 and kar5 mutations were suggestive of protein–protein interactions. Moreover, in sec71 mutants, Kar5p was absent from the SPB and was not detected by Western blot or immunoprecipitation of pulse-labeled protein. KAR8 is allelic to JEMI, encoding an endoplasmic reticulum resident DnaJ protein required for nuclear fusion. Overexpression of KAR8/JEM1 (but not SEC63) strongly suppressed the mating defect of kar2-1, suggesting that Kar2p interacts with Kar8/Jem1p for nuclear fusion. Electron microscopy analysis of kar8 mutant zygotes revealed a nuclear fusion defect different from kar2, kar5, and kar7/sec71 mutants. Analysis of double mutants suggested that Kar5p acts before Kar8/Jem1p. We propose the existence of a nuclear envelope fusion chaperone complex in which Kar2p, Kar5p, and Kar8/Jem1p are key components and Sec71p and Sec72p play auxiliary roles.
Resumo:
Diploid yeast develop pseudohyphae in response to nitrogen starvation, while haploid yeast produce invasive filaments which penetrate the agar in rich medium. We have identified a gene, FLO11, that encodes a cell wall protein which is critically required for both invasion and pseudohyphae formation in response to nitrogen starvation. FLO11 encodes a cell surface flocculin with a structure similar to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. Cells of the Saccharomyces cerevisiae strain Σ1278b with deletions of FLO11 do not form pseudohyphae as diploids nor invade agar as haploids. In rich media, FLO11 is regulated by mating type; it is expressed in haploid cells but not in diploids. Upon transfer to nitrogen starvation media, however, FLO11 transcripts accumulate in diploid cells, but not in haploids. Overexpression of FLO11 in diploid cells, which are otherwise not invasive, enables them to invade agar. Thus, the mating type repression of FLO11 in diploids grown in rich media suffices to explain the inability of these cells to invade. The promoter of FLO11 contains a consensus binding sequence for Ste12p and Tec1p, proteins known to cooperatively activate transcription of Ty1 elements and the TEC1 gene during development of pseudohyphae. Yeast with a deletion of STE12 does not express FLO11 transcripts, indicating that STE12 is required for FLO11 expression. These ste12-deletion strains also do not invade agar. However, the ability to invade can be restored by overexpressing FLO11. Activation of FLO11 may thus be the primary means by which Ste12p and Tec1p cause invasive growth.
Resumo:
Cell fusion in yeast is the process by which two haploid cells fuse to form a diploid zygote. To dissect the pathway of cell fusion, we phenotypically and genetically characterized four cell fusion mutants, fus6/spa2, fus7/rvs161, fus1, and fus2. First, we examined the complete array of single and double mutants. In all cases but one, double mutants exhibited stronger cell fusion defects than single mutants. The exception was rvs161Δ fus2Δ, suggesting that Rvs161p and Fus2p act in concert. Dosage suppression analysis showed that Fus1p and Fus2p act downstream or parallel to Rvs161p and Spa2p. Second, electron microscopic analysis was used to define the mutant defects in cell fusion. In wild-type prezygotes vesicles were aligned and clustered across the cell fusion zone. The vesicles were associated with regions of cell wall thinning. Analysis of Fus− zygotes indicated that Fus1p was required for the normal localization of the vesicles to the zone of cell fusion, and Spa2p facilitated their clustering. In contrast, Fus2p and Rvs161p appeared to act after vesicle positioning. These findings lead us to propose that cell fusion is mediated in part by the localized release of vesicles containing components essential for cell fusion.
Resumo:
Inoculation of diploid budding yeast onto nitrogen-poor agar media stimulates a MAPK pathway to promote filamentous growth. Characteristics of filamentous cells include a specific pattern of gene expression, elongated cell shape, polar budding pattern, persistent attachment to the mother cell, and a distinct cell cycle characterized by cell size control at G2/M. Although a requirement for MAPK signaling in filamentous gene expression is well established, the role of this pathway in the regulation of morphogenesis and the cell cycle remains obscure. We find that ectopic activation of the MAPK signal pathway induces a cell cycle shift to G2/M coordinately with other changes characteristic of filamentous growth. These effects are abrogated by overexpression of the yeast mitotic cyclins Clb1 and Clb2. In turn, yeast deficient for Clb2 or carrying cdc28-1N, an allele of CDK defective for mitotic functions, display enhanced filamentous differentiation and supersensitivity to the MAPK signal. Importantly, activation of Swe1-mediated inhibitory phosphorylation of Thr-18 and/or Tyr-19 of Cdc28 is not required for the MAPK pathway to affect the G2/M delay. Mutants expressing a nonphosphorylatable mutant Cdc28 or deficient for Swe1 exhibit low-nitrogen-dependent filamentous growth and are further induced by an ectopic MAPK signal. We infer that the MAPK pathway promotes filamentous growth by a novel mechanism that inhibits mitotic cyclin/CDK complexes and thereby modulates cell shape, budding pattern, and cell-cell connections.