940 resultados para Digestive enzymes.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitination appears to be involved in virus particle release from infected cells. Free ubiquitin (Ub), as well as Ub covalently bound to a small fraction of p6 Gag, is detected in mature HIV particles. Here we report that the p6 region in the Pr55Gag structural precursor polyprotein binds to Tsg101, a putative Ub regulator that is involved in trafficking of plasma membrane-associated proteins. Tsg101 was found to interact with Gag in (i) a yeast two-hybrid assay, (ii) in vitro coimmunoprecipitation by using purified Pr55Gag and rabbit reticulocyte lysate-synthesized Tsg101, and (iii) in vivo in the cytoplasm of COS cells transfected with gag. The PTAPP motif [or late (L) domain] within p6, which is required for release of mature virus from the plasma membrane, was the determinant for binding Pr55Gag. The N-terminal region in Tsg101, which is homologous to the Ubc4 class of Ub-conjugating (E2) enzymes, was the determinant of interaction with p6. Mutation of Tyr-110 in Tsg101, present in place of the active-site Cys that binds Ub in E2 enzymes, and other residues unique to Tsg101, impaired p6 interaction, indicating that features that distinguish Tsg101 from active E2 enzymes were important for binding the viral protein. The results link L-domain function in HIV to the Ub machinery and a specific component of the cellular trafficking apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residue 225 in serine proteases is typically Pro or Tyr and specifies an important and unanticipated functional aspect of this class of enzymes. Proteases with Y225, like thrombin, are involved in highly specialized functions like blood coagulation and complement that are exclusively found in vertebrates. In these proteases, the catalytic activity is enhanced allosterically by Na+ binding. Proteases with P225, like trypsin, are typically involved in digestive functions and are also found in organisms as primitive as eubacteria. These proteases have no requirement for Na+ or other monovalent cations. The molecular origin of this physiologically important difference is remarkably simple and is revealed by a comparison of the Na+ binding loop of thrombin with the homologous region of trypsin. The carbonyl O atom of residue 224 makes a key contribution to the coordination shell of the bound Na+ in thrombin, but is oriented in a manner incompatible with Na+ binding in trypsin because of constraints imposed by P225 on the protein backbone. Pro at position 225 is therefore incompatible with Na+ binding and is a direct predictor of the lack of allosteric regulation in serine proteases. To directly test this hypothesis, we have engineered the thrombin mutant Y225P. This mutant has lost the ability to bind Na+ and behaves like the allosteric slow (Na(+)-free) form. The Na(+)-induced allosteric regulation also bears on the molecular evolution of serine proteases. A strong correlation exists between residue 225 and the codon used for the active site S195. Proteases with P225 typically use a TCN codon for S195, whereas proteases with Y225 use an AGY codon. It is proposed that serine proteases evolved from two main lineages: (i) TCN/P225 with a trypsin-like ancestor and (ii) AGY/Y225 with a thrombin-like ancestor. We predict that the Na(+)-induced allosteric regulation of catalytic activity can be introduced in the TCN/P225 lineage using the P225Y replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5' untranslated region of the mRNA encoding the iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH). This interaction is developmentally regulated during Drosophila embryogenesis. In a cell-free translation system, recombinant IRP-1 imposes highly specific translational repression on a reporter mRNA bearing the SDH IRE, and the translation of SDH-Ip mRNA is iron regulated in D. melanogaster Schneider cells. In mammals, an IRE was identified in the 5' untranslated regions of mitochondrial aconitase mRNAs from two species. Recombinant IRP-1 represses aconitase synthesis with similar efficiency as ferritin IRE-controlled translation. The interaction between mammalian IRPs and the aconitase IRE is regulated by iron, nitric oxide, and oxidative stress (H2O2), indicating that these three signals can control the expression of mitochondrial aconitase mRNA. Our results identify a regulatory link between energy and iron metabolism in vertebrates and invertebrates, and suggest biological functions for the IRE/IRP regulatory system in addition to the maintenance of iron homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-term goal in the field of restriction-modification enzymes has been to generate restriction endonucleases with novel sequence specificities by mutating or engineering existing enzymes. This will avoid the increasingly arduous task of extensive screening of bacteria and other microorganisms for new enzymes. Here, we report the deliberate creation of novel site-specific endonucleases by linking two different zinc finger proteins to the cleavage domain of Fok I endonuclease. Both fusion proteins are active and under optimal conditions cleave DNA in a sequence-specific manner. Thus, the modular structure of Fok I endonuclease and the zinc finger motifs makes it possible to create "artificial" nucleases that will cut DNA near a predetermined site. This opens the way to generate many new enzymes with tailor-made sequence specificities desirable for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silver (svr) gene of Drosophila melanogaster is required for viability, and severe mutant alleles result in death prior to eclosion. Adult flies homozygous or hemizygous for weaker alleles display several visible phenotypes, including cuticular structures that are pale and silvery in color due to reduced melanization. We have identified and cloned the DNA encoding the svr gene and determined the sequence of several partially overlapping cDNAs derived from svr mRNAs. The predicted amino acid sequence of the polypeptides encoded by these cDNAs indicates that the silver proteins are members of the family of preprotein-processing carboxypeptidases that includes the human carboxypeptidases E, M, and N. One class of svr mRNAs is alternatively spliced to encode at least two polyproteins, each of which is composed of two carboxypeptidase domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depletion of specific cellular proteins is a powerful tool in biological research and has many medical and agricultural benefits. In contrast to genetic methods currently available to attenuate protein levels, we describe an alternative approach that redirects the ubiquitin-dependent proteolytic pathway to facilitate specific proteolytic removal. Degradation via the ubiquitin pathway requires the prior attachment of multiple ubiquitins to the target protein. This attachment is accomplished, in part, by a family of enzymes designated E2s (or ubiquitin-conjugating enzymes), some of which use domains near their C termini for target recognition. Here, we demonstrate that E2 target recognition can be redefined by engineering E2s to contain appropriate protein-binding peptides fused to their C termini. In five dissimilar examples, chimeric E2s were created that recognized and ubiquitinated their respective binding partners with high specificity. We also show that ubiquitination of one protein targeted by this method led to its ATP-dependent degradation in vitro. Thus, by exploiting interacting domains derived from natural and synthetic ligands, it may be possible to design E2s capable of directing the selective removal of many intracellular proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detoxication (phase 2) enzymes, such as glutathione S-transferases (GSTs), NAD(P)H:(quinone-acceptor) oxidoreductase (QR), and UDP-glucuronsyltransferase, are induced in animal cells exposed to a variety of electrophilic compounds and phenolic antioxidants. Induction protects against the toxic and neoplastic effects of carcinogens and is mediated by activation of upstream electrophile-responsive/antioxidant-responsive elements (EpRE/ARE). The mechanism of activation of these enhancers was analyzed by transient gene expression of growth hormone reporter constructs containing a 41-bp region derived from the mouse GST Ya gene 5'-upstream region that contains the EpRE/ARE element and of constructs in which this element was replaced with either one or two consensus phorbol 12-tetradecanoate 13-acetate (TPA)-responsive elements (TREs). When these three constructs were compared in Hep G2 (human) and Hepa 1c1c7 (murine) hepatoma cells, the wild-type sequence was highly activated by diverse inducers, including tert-butylhydroquinone, Michael reaction acceptors, 1,2-dithiole-3-thione, sulforaphane,2,3-dimercapto-1-propanol, HgCl2, sodium arsenite, and phenylarsine oxide. In contrast, constructs with consensus TRE sites were not induced significantly. TPA in combination with these compounds led to additive or synergistic inductions of the EpRE/ARE construct, but induction of the TRE construct was similar to that induced by TPA alone. Transfection of the EpRE/ARE reporter construct into F9 cells, which lack endogenous TRE-binding proteins, produced large inductions by the same compounds, which also induced QR activity in these cells. We conclude that activation of the EpRE/ARE by electrophile and antioxidant inducers is mediated by EpRE/ARE-specific proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using partial amino acid sequence data derived from porcine methionyl aminopeptidase (MetAP; methionine aminopeptidase, peptidase M; EC 3.4.11.18), a full-length clone of the homologous human enzyme has been obtained. The cDNA sequence contains 2569 nt with a single open reading frame corresponding to a protein of 478 amino acids. The C-terminal portion representing the catalytic domain shows limited identity with MetAP sequences from various prokaryotes and yeast, while the N terminus is rich in charged amino acids, including extended strings of basic and acidic residues. These highly polar stretches likely result in the spuriously high observed molecular mass (67 kDa). This cDNA sequence is highly similar to a rat protein, termed p67, which was identified as an inhibitor of phosphorylation of initiation factor eIF2 alpha and was previously predicted to be a metallopeptidase based on limited sequence homology. Model building established that human MetAP (p67) could be readily accommodated into the Escherichia coli MetAP structure and that the Co2+ ligands were fully preserved. However, human MetAP was found to be much more similar to a yeast open reading frame that differed markedly from the previously reported yeast MetAP. A similar partial sequence from Methanothermus fervidus suggests that this p67-like sequence is also found in prokaryotes. These findings suggest that there are two cobalt-dependent MetAP families, presently composed of the prokaryote and yeast sequences (and represented by the E. coli structure) (type I), on the one hand, and by human MetAP, the yeast open reading frame, and the partial prokaryotic sequence (type II), on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydroepiandrosterone (DHEA), an intermediate in the biosynthesis of testosterone and estrogens, exerts several physiological effects not involving the sex hormones. When fed to rats it induces the thermogenic enzymes mitochondrial sn-glycerol-3-phosphate dehydrogenase and cytosolic malic enzyme in their livers. Animals and humans, and their excised tissues, are known to hydroxylate DHEA at several positions and to interconvert 7 alpha-hydroxy-DHEA, 7 beta-hydroxy-DHEA, 7-oxo-DHEA, and the corresponding derivatives of androst-5-enediol. We report here that these 7-oxygenated derivatives are active inducers of these thermogenic enzymes in rats and that the 7-oxo derivatives are more active than the parent steroids. We postulate that the 7 alpha-hydroxy and 7-oxo derivatives are on a metabolic pathway from DHEA to more active steroid hormones. These 7-oxo steroids have potential as therapeutic agents because of their increased activity and because they are not convertible to either testosterone or estrogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global cellular reorganization occurs during the reticulocyte stage of erythroid differentiation. This reorganization is accomplished partly through programmed protein degradation. The selection of proteins for degradation can be mediated by covalent attachment of ubiquitin. We have cloned cDNAs encoding two ubiquitin-conjugating (E2) enzymes, E2-20K and E2-230K, and found their genes to be strongly induced during the differentiation of erythroblasts into reticulocytes. Induction of the E2-20K and E2-230K genes is specific, as transcript levels for at least two other ubiquitinating enzymes fall during erythroblast differentiation. In contrast to most proteins induced in reticulocytes, E2-20K and E2-230K enzymes are present at strongly reduced levels in erythrocytes and thus decline in abundance as reticulocyte maturation is completed. This result suggests that both enzymes function during the reticulocyte stage, when enhanced protein degradation has been observed. These data implicate regulated components of the ubiquitin conjugation machinery in erythroid differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of phenylalanine-derived phenolic compounds is a well-known element of a plant's defense in response to pathogen attack. Phenylalanine, as well as the other two aromatic amino acids, tyrosine and tryptophan, is synthesized by way of the shikimate pathway. The first seven steps of the shikimate pathway (the prechorismate pathway) are common for the biosynthesis of all three aromatic amino acids. We have studied transcript levels of six genes--i.e., two 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes, one shikimate kinase gene, one 5-enolpyruvylshikimate 3-phosphate synthase gene, and two chorismate synthase genes--corresponding to four steps of the prechorismate pathway, in cultured tomato cells exposed to fungal elicitors. The abundance of transcripts specific for some of these genes increased 10- to 20-fold within 6 h after elicitor treatment, as did the abundance of phenylalanine ammonialyase-specific transcripts and the synthesis of ethylene. Interestingly, transcript accumulation occurred more rapidly for shikimate kinase than for the enzymes preceding or following it in the prechorismate pathway. Neither the inhibition of ethylene biosynthesis by aminoethoxyvinylglycine nor inhibition of phenylalanine ammonia-lyase (EC 4.3.1.5) activity by 2-aminoindan-2-phosphonic acid affected the time course or extent of transcript accumulation. Thus, the increased demand for phenylalanine in the phenylpropanoid pathway required after elicitor treatment appears to be met by increased de novo synthesis of its biosynthetic enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template.