951 resultados para Differential thermal analysis
Resumo:
Grewia gum is a naturally occurring polysaccharide which has potential as a pharmaceutical excipient. Differential scanning calorimetry and Fourier transform infrared (FT-IR) spectroscopy techniques were used to examine the thermal and molecular behaviours, respectively, of mixtures of grewia gum with cimetidine, ibuprofen or standard excipients, to assess potential interactions. No disappearance or broadening of the melting endotherm was seen with cimetidine or ibuprofen. Similarly, there was no interaction between grewia gum and the standard excipients tested. The results obtained using thermal analyses were supported by FT-IR analysis of the material mixtures. Grewia gum is an inert natural polymer which can be used alone or in combination with other excipients in the formulation of pharmaceutical dosage forms. © 2011 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
The PSFC (Pr0.5Sr0.5Fe1-xCuxO3-δ) is a new mixed oxide perovskite and has been studied and evaluated the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs), mainly due to its good compatibility with the electrolyte (CGO) and its high ionic conductivity and electronic in intermediate temperature. In this work, PSFC powders with two different compositions (Pr0,5Sr0,5Fe0,8Cu0,2O3- PSFC5582 and Pr0,5Sr0,5Fe0,6Cu0,4O3-PSFC5564) were synthesized by the citrate method using a new route. The powders obtained were characterized by thermal analysis (Differential Scanning Calorimetry and Thermogravimetry), and the material calcined at 800, 900 and 1000 °C for 5h were analyzed by X-ray diffractometry (XRD), with the Rietveld refinement of the diffraction data and dilatometry. PSFC5582 composite films were obtained by screen printing of powder calcined at 1000 °C. The films were deposited on substrate ceria doped with gadolinia (CGO) and then sintered at 1050 °C for 2h. The electrochemical performance of the electrodes was evaluated by impedance spectroscopy and the interface electrode/electrolyte was observed by scanning electron microscopy (SEM). The specific resistance area (ASR) was 0.44 Ω.cm² at 800 °C, slightly lower than those reported in the literature for cathodes containing cobalt. The thermal expansion coefficients of both the PSFC compositions were obtained and varied between 13 and 15 x 10-6 °C-1 , in a temperature range of 200 to 650 °C, demonstrating the good thermal compatibility of cathodes with Ce0,9Gd0,1O1,95 electrolytes (CET = 12 x 10-6 °C).
Resumo:
Composite NiO-C0.9Gd0.1O1.95 (NiO-GDC), one of the materials most used for the manufacture of anodes of Cells Solid Oxide Fuel (SOFC) currently, were obtained by a chemical route which consists in mixing the precursor solution of NiO and CGO phases obtained previously by the Pechini method. The nanopowders as-obtained were characterized by thermal analysis techniques (thermogravimetry and Differential Scanning Calorimetry) and calcined materials were evaluated by X-ray diffraction (XRD). Samples sintered between 1400 and 1500 ° C for 4 h were characterized by Archimedes method. The effects of the composition on the microstructure and electrical properties (conductivity and activation energy) of the composites sintered at 1500 ° C were investigated by electron microscopy and impedance spectroscopy (between 300 and 650 ° C in air). The refinement of the XRD data indicated that the powders are ultrafine and the crystallite size of the CGO phase decreases with increasing content of NiO. Similarly, the crystallite of the NiO phase tends to decrease with increasing concentration of CGO, especially above 50 wt % CGO. Analysis by Archimedes shows a variation in relative density due to the NiO content. Densities above 95% were obtained in samples containing from 50 wt % NiO and sintered between 1450 and 1500 °C. The results of microscopy and impedance spectroscopy indicate that from 30-40 wt.% NiO there is an increase in the number of contacts NiO - NiO, activating the electronic conduction mechanism which governs the process of conducting at low temperatures (300 - 500 °C). On the other hand, with increasing the measuring temperature the mobility of oxygen vacancies becomes larger than that of the electronic holes of NiO, as a result, the high temperature conductivity (500-650 ° C) in composites containing up to 30-40 wt.% of NiO is lower than that of CGO. Variations in activation energy confirm change of conduction mechanism with the increase of the NiO content. The composite containing 50 wt. % of each phase shows conductivity of 19 mS/cm at 650 °C (slightly higher than 13 mS/cm found for CGO) and activation energy of 0.49 eV.
Resumo:
Recently thermo-electrical nanoantennas, also known as Seebeck nanoantennas, have been proposed as an alternative for solar energy harvesting applications. In this work we present the optical and thermal analysis of metallic nanoantennas operating at infrared wavelengths, this study is performed by numerical simulations using COMSOL Multiphysics. Several different nanoantenna designs were analyzed including dipoles, bowties and square spiral antennas. Results show that metallic nanoantennas can be tuned to absorb electromagnetic energy at infrared wavelengths, and that numerical simulation can be useful in optimizing the performance of these types of nanoantennas at optical and infrared wavelengths.
Resumo:
The objective of this study was to determine if a high Tg polymer (Eudragit® S100) could be used to stabilize amorphous domains of polyethylene oxide (PEO) and hence improve the stability of binary polymer systems containing celecoxib (CX). We propose a novel method of stabilizing the amorphous PEO solid dispersion through inclusion of a miscible, high Tg polymer, namely, that can form strong inter-polymer interactions. The effects of inter-polymer interactions and miscibility between PEO and Eudragit S100 are considered. Polymer blends were first manufactured via hot-melt extrusion at different PEO/S100 ratios (70/30, 50/50, and 30/70 wt/wt). Differential scanning calorimetry and dynamic mechanical thermal analysis data suggested a good miscibility between PEO and S100 polymer blends, particularly at the 50/50 ratio. To further evaluate the system, CX/PEO/S100 ternary mixtures were extruded. Immediately after hot-melt extrusion, a single Tg that increased with increasing S100 content (anti-plasticization) was observed in all ternary systems. The absence of powder X-ray diffractometry crystalline Bragg’s peaks also suggested amorphization of CX. Upon storage (40°C/75% relative humidity), the formulation containing PEO/S100 at a ratio of 50:50 was shown to be most stable. Fourier transform infrared studies confirmed the presence of hydrogen bonding between Eudragit S100 and PEO suggesting this was the principle reason for stabilization of the amorphous CX/PEO solid dispersion system.
Resumo:
The article is focused on analysis of global efficiency of new mold for rotational molding of plastic parts, being directly heated by thermal fluid. The overall efficiency is based on several items such as reduction of cycle time, better uniformity of heating-cooling and low energy consumption. The new tool takes advantage of additive fabrication and electroforming for making the optimal manifold and cavity shell of the mold. Experimental test of a prototype mold was carried out on an experimental rotational molding machine, developed for this purpose, measuring wall temperature, and internal air temperature, with and without plastic material inside. Results were compared with conventional mold heated into an oven and to theoretical simulations done by Computational Fluid Dynamic software (CFD). The analysis represents considerable improvement of cycle time related to conventional methods (heated by oven) and better thermal uniformity to conventional procedures by direct heating of oil with external channels. In addition to thermal analysis an energetic efficiency study was done. POLYM. ENG. SCI., 52:1998-2005, 2012. © 2012 Society of Plastics Engineers Copyright © 2012 Society of Plastics Engineers.
Resumo:
Lasiodiplodan is an exocellular β-glucan with biological functionalities such as antioxidant, antiproliferative, hypocholesterolemic, protective activity against DNA damage induced by doxorubicin and hypoglycemic activity. Chemical derivatization of polysaccharide macromolecules has been considered as a potentiating mechanism for bioactivity. In this context, this work proposes the derivatization of lasiodiplodan by acetylation. Acetic anhydride was used as derivatizing agent and pyridine as catalyst and reaction medium. The derivatives obtained were evaluated by its water solubility, degree of substitution (DS), antioxidant potential, and characterized by infrared spectroscopy (FT-IR), thermal analysis, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Acetylated derivatives with different degrees of substitution (1.26; 1.03; 0.66 and 0.48) were obtained, and there was correlation between the concentration of derivatizing agent and DS. FT-IR spectroscopy analysis confirmed the insertion of acetyl groups into derivatized macromolecules (LAS-AC) through of specific bands concerning to carbonyl group (C = O) and increase in C-O vibration. SEM analysis indicated that native lasiodiplodan presents morphological structure in the form of thin films with translucent appearance and folds along its length. Derivatization led to morphological changes in the polymer, including aspects thickness, translucency and agglomeration. Thermal analysis indicated the native sample and derivative with DS 0.48 presented three weight loss stages. The first stage occurred until 125 ° C (loss of water) and there were two consecutive events of weight loss (200 ° C - 400 ° C) attributed to molecule degradation. Samples with DS 1.26; 1.03 and 0.66 demonstrated four weight loss stages. The first stage occurred until 130 ° C (loss of water), following by two consecutive events of weight loss (200 ° C - 392 ° C) attributed to degradation of the biopolymer. The fourth stage was between 381 ° C and 532 ° C (final decomposition) with exothermic peaks between 472 ° C and 491 ° C. X-ray diffraction patterns showed that native and acetylated lasiodiplodan have amorphous structure with semicrystalline regions. Derivatization did not contribute to increased solubility of the macromolecule, but potentiated its antioxidant capacity. Acetylation of lasiodiplodan allowed to obtaining a new macromolecule with higher antioxidant potential than the native molecule and with technological properties applicable in various industrial sectors.
Resumo:
Pesquisas com microalgas estão crescendo devido aos possíveis bioprodutos oriundos de sua biomassa, bem como as suas diferentes aplicabilidades. Microalgas podem ser cultivadas para a produção de biopolímeros com características de biocompatibilidade e biodegradabilidade. Nanofibras produzidas por electrospinning a partir de poli-β-hidroxibutirato (PHB) geram produtos com aplicabilidade na área de alimentos e médica. O objetivo deste trabalho foi selecionar microalgas com maior potencial para síntese de biopolímeros, em diferentes meios de cultivo, bem como purificar poli-β-hidroxibutirato e desenvolver nanofibras. Este trabalho foi dividido em cinco artigos: (1) Seleção de microalgas produtoras de biopolímeros; (2) Produção de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivo com diferentes fontes de carbono e redução de nitrogênio; (3) Síntese de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivos autotróficos e mixotróficos; (4) Purificação de poli-β- hidroxibutirato extraído da microalga Spirulina sp. LEB 18; e (5) Produção de nanofibras a partir de poli-β-hidroxibutirato de origem microalgal. Foram estudadas as microalgas Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 e Synechococcus nidulans. Os biopolímeros foram extraídos nos tempos de 5, 10, 15, 20 e 25 d de cultivo a partir de digestão diferencial. Para os experimentos com diferentes nutrientes, foi utilizado como fonte de carbono, bicarbonato de sódio, acetato de sódio, glicose e glicerina modificando-se as concentrações de nitrogênio e fósforo. Os cultivos foram realizados em fotobiorreatores fechados de 2 L. A concentração inicial de inóculo foi 0,15 g.L-1 e os ensaios foram mantidos em estufa termostatizada a 30 ºC com iluminância de 41,6 µmolfótons.m -2 .s -1 e fotoperíodo 12 h claro/escuro. Para a purificação de PHB, foi utilizada a biomassa da cianobactéria Spirulina sp. LEB 18, cultivada em meio Zarrouk. Após a extração do biopolímero bruto, a amostra foi desengordurada com hexano e purificada com 1,2-carbonato de propileno. Foram determinadas as purezas e as propriedades térmicas no PHB purificado. O biopolímero utilizado para produzir as nanofibras apresentava 70 % de pureza. A técnica para produção de nanofibras foi o electrospinning. As microalgas que apresentaram máxima produtividade foram Nostoc ellipsosporum e Spirulina sp. LEB 18 com rendimento de biopolímero 19,27 e 20,62 % em 10 e 15 d, respectivamente, na fase de máximo crescimento celular. O maior rendimento de biopolímeros (54,48 %) foi obtido quando se utilizou 8,4 g.L-1 de NaHCO3, 0,05 g.L-1 de NaNO3 e 0,1 g.L-1 de K2HPO4. A condição que proporcionou maior pureza do PHB foi a 130 ºC e 5 min de contato entre o solvente (1,2-carbonato de propileno) e o PHB. As análises térmicas para todas as amostras foram semelhantes em relação ao PHB padrão (Sigma-Aldrich). A purificação com 1,2-carbonato de propileno foi eficiente para o PHB extraído de microalga, alcançando pureza acima de 90 %. A condição que apresentou menores diâmetros de nanofibras foi ao utilizar solução contendo 20 % de biopolímero solubilizado em clorofórmio. As condições do electrospinning que apresentou nanofibras com diâmetros de 470 e 537 nm foram, vazão 150 µL.h-1 , diâmetro do capilar 0,45 mm e voltagens entre 24,1 e 29,6 kV, respectivamente. A microalga Spirulina sp. LEB 18 produz PHB ao utilizar menores concentrações de nutrientes no meio de cultivo, que pode ser purificado com 1,2-carbonato de propileno. Este biopolímero possui aplicabilidade para produção de nanofibras.
Resumo:
Wood is considered an ideal solution for floors and roofs building construction, due the mechanical and thermal properties, associated with acoustic conditions. These constructions have good sound absorption, heat insulation and relevant architectonic characteristics. They are used in many civil applications: concert and conference halls, auditoriums, ceilings, walls… However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering different material insulation, with different sizes, inside the cavities. A transient thermal analysis with nonlinear material behaviour will be solved using ANSYS© program. This study allows to verify the fire resistance, the temperature evolution and the char-layer, throughout a wooden cellular slab with perforations and considering the insulation effect inside the cavities.
Resumo:
In this work humic substances (HS) extracted from non-flooded (Araca) and flooded (Iara) soils were characterized through the calculation of stability and activation energies associated with the dehydration and thermal decomposition of HS using TGA and DTA, electronic paramagnetic resonance and C/H, C/N and C/O atomic ratios. For HS extracted from flooded soils, there was evidence for the influence of humidity on the organic matter humification process. Observations of thermal behaviour, with elemental analysis, indicated the presence of fossilized organic carbon within clay particles, which only decomposed above 800 C. This characteristic could explain the different thermal stability and pyrolysis activation energies for Iara HS compared to Araca HS.
Resumo:
Nowadays the environmental issues are increasingly highlighted since the future of humanity is dependent on the actions taken by man. Major efforts are being expended in pursuit of knowledge and alternatives to promote sustainable development without compromising the environment. In recent years there has been a marked growth in the development of reinforced composite fiber plants, as an alternative for economic and ecological effects, especially in the substitution of synthetic materials such as reinforcement material in composites. In this current study the chemical- physical or (thermophysics )characteristics of the babassu coconut fiber, derived from the epicarp of the fruit (Orbignyda Phalerata), which the main constituents of the fiber: Klason lignin, insoluble, cellulose, holocellulose, hemicellulose and the content of ash and moisture will be determined. A study was conducted about the superficial modification of the fibers of the epicarp babassu coconut under the influence of chemical treatment by alkalinization, in an aqueous solution of NaOH to 2.5% (m/v) and to 5.0% to improve the compatibility matrix / reinforcement composite with epoxy matrix. The results of the changes occurred in staple fibers through the use of the techniques of thermogravimetric analyses (TG) and differential scanning calorimetry (DSC). The results found on thermal analysis on samples of fiber without chemical treatment (alkalinities), and on fiber samples treated by alkalinization show that the proposed chemical treatment increases the thermal stability of the fibers and provides a growth of the surface of area fibers, parameters that enhance adhesion fiber / composite. The findings were evaluated and compared with published results from other vegetable fibers, showing that the use of babassu coconut fibers has technical and economic potential for its use as reinforcement in composites