907 resultados para Deep Geological Repository
Resumo:
The book describes a wide variety of students’ experiences in their practical year prior to entering University to study BSc Agriculture. Until comparatively recently it was the normal requirement for all such students, whether or not they already had home farming experience, to gain a full year’s experience of practical agriculture – and to write a report thereon. This record of 41 students’ reports of the pre-entry year begins with Paul’s own experience in the early 1950s before 41 reports from 30 or more years ago. The essays provide compelling and fascinating stories, well-articulated with clear acknowledgement for most part of the humanity and the warmth with which each student was treated by farmers and farm workers alike, despite the difference in both age and experience (considerable!). [This summary is an extract from the full overview which is archived here together with the book.]
Resumo:
Atmospheric dust is an important feedback in the climate system, potentially affecting the radiative balance and chemical composition of the atmosphere and providing nutrients to terrestrial and marine ecosystems. Yet the potential impact of dust on the climate system, both in the anthropogenically disturbed future and the naturally varying past, remains to be quantified. The geologic record of dust provides the opportunity to test earth system models designed to simulate dust. Records of dust can be obtained from ice cores, marine sediments, and terrestrial (loess) deposits. Although rarely unequivocal, these records document a variety of processes (source, transport and deposition) in the dust cycle, stored in each archive as changes in clay mineralogy, isotopes, grain size, and concentration of terrigenous materials. Although the extraction of information from each type of archive is slightly different, the basic controls on these dust indicators are the same. Changes in the dust flux and particle size might be controlled by a combination of (a) source area extent, (b) dust emission efficiency (wind speed) and atmospheric transport, (c) atmospheric residence time of dust, and/or (d) relative contributions of dry settling and rainout of dust. Similarly, changes in mineralogy reflect (a) source area mineralogy and weathering and (b) shifts in atmospheric transport. The combination of these geological data with process-based, forward-modelling schemes in global earth system models provides an excellent means of achieving a comprehensive picture of the global pattern of dust accumulation rates, their controlling mechanisms, and how those mechanisms may vary regionally. The Dust Indicators and Records of Terrestrial and MArine Palaeoenvironments (DIRTMAP) data base has been established to provide a global palaeoenvironmental data set that can be used to validate earth system model simulations of the dust cycle over the past 150,000 years.
Resumo:
∆14Catm has been estimated as 420 ± 80‰ (IntCal09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. ∆14Catm is a function of both cosmogenic production in the high atmosphere and of carbon cycling and partitioning in the Earth system. 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ in the LGM. The remaining 220‰ have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010, 2011) proposed to explain most of the difference in pCO2atm and δ13C between glacial and interglacial times as a result of brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that contribute to high carbon storage in the deep ocean. During glacial times, the sinking of brines is enhanced and more carbon is stored in the deep ocean, lowering pCO2atm. Moreover, the sinking of brines induces increased stratification in the Southern Ocean, which keeps the deep ocean well isolated from the surface. Such an isolated ocean reservoir would be characterized by a low ∆14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al. 2010). The degassing of this carbon with low ∆14C would then reduce ∆14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both the sinking of brine and cosmogenic production, alongside iron fertilization mechanisms, to explain changes in ∆14Catm during the last deglaciation. In our simulations, not only is the sinking of brine mechanism consistent with past ∆14C data, but it also explains most of the differences in pCO2atm and ∆14Catm between the LGM and preindustrial times. Finally, this study represents the first time to our knowledge that a model experiment explains glacial-interglacial differences in pCO2atm, δ13C, and ∆14C together with a coherent LGM climate.
Resumo:
Aims Current estimates of soil organic carbon (SOC) are based largely on surficial measurements to depths of 0.3 to 1 m. Many of the world’s soils greatly exceed 1 m depth and there are numerous reports of biological activity to depths of many metres. Although SOC storage to depths of up to 8 m has been previously reported, the extent to which SOC is stored at deeper depths in soil profiles is currently unknown. This paper aims to provide the first detailed analysis of these previously unreported stores of SOC. Methods Soils from five sites in the deeply weathered regolith in the Yilgarn Craton of south-western Australia were sampled and analysed for total organic carbon by combustion chromatography. These soils ranged between 5 and 38 m (mean 21 m) depth to bedrock and had been either recently reforested with Pinus pinaster or were under agriculture. Sites had a mean annual rainfall of between 399 and 583 mm yr−1. Results The mean SOC concentration across all sites was 2.30 ± 0.26 % (s.e.), 0.41 ± 0.05 % and 0.23 ± 0.04 % in the surface 0.1, 0.1–0.5 and 0.5 to 1.0 m increments, respectively. The mean value between 1 and 5 m was 0.12 ± 0.01 %, whereas between 5 and 35 m the values decreased from 0.04 ± 0.002 % to 0.03 ± 0.003 %. Mean SOC mass densities for each of the five locations varied from 21.8–37.5 kg C m−2, and were in toto two to five times greater than would be reported with sampling to a depth of 0.5 m. Conclusions This finding may have major implications for estimates of global carbon storage and modelling of the potential global impacts of climate change and land-use change on carbon cycles. The paper demonstrates the need for a reassessment of the current arbitrary shallow soil sampling depths for assessing carbon stocks, a revision of global SOC estimates and elucidation of the composition and fate of deep carbon in response to land use and climate change
Resumo:
We investigated commensalism of water use among annual shallow-rooted and perennial deep-rooted pasture legumes by examining the effect of hydraulic lift by Cullen pallidum (N.T.Burb.) J.W.Grimes and Medicago sativa on growth, survival and nutrient uptake of Trifolium subterraneum L. A vertically split-root design allowed separate control of soil water in top and bottom soil. Thirty-five days after watering ceased in the top tube, but soil remained at field capacity in the bottom tube, an increase in shallow soil water content by hydraulic lift was 5.6 and 5.9 g kg−1 soil overnight for C. pallidum and M. sativa, respectively. Trifolium subterraneum in this treatment maintained higher leaf water potentials (with M. sativa) or exhibited a slower decline (with C. pallidum) than without companion perennial plants; and shoot biomass of T. subterraneum was 56% (with C. pallidum) and 67% (with M. sativa) of that when both top and bottom tubes were at field capacity. Uptake of rubidium (a potassium analog) and phosphorus by T. subterraneum was not facilitated by hydraulic lift. Interestingly, phosphorus content was threefold greater, and shoot biomass 1.5–3.3-fold greater when T. subterraneum was interplanted with C. pallidum compared with M. sativa, although dry weight of C. pallidum was much greater than that of M. sativa. This study showed that interplanting with deep-rooted perennial legumes has benefited the survival of T. subterraneum.
Resumo:
Air frying is being projected as an alternative to deep fat frying for producing snacks such as French Fries. In air frying, the raw potato sections are essentially heated in hot air containing fine oil droplets, which dehydrates the potato and attempts to impart the characteristics of traditionally produced French fries, but with a substantially lower level of fat absorbed in the product. The aim of this research is to compare: 1) the process dynamics of air frying with conventional deep fat frying under otherwise similar operating conditions, and 2) the products formed by the two processes in terms of color, texture, microstructure, calorimetric properties and sensory characteristics Although, air frying produced products with a substantially lower fat content but with similar moisture contents and color characteristics, it required much longer processing times, typically 21 minutes in relation to 9 minutes in the case of deep fat frying. The slower evolution of temperature also resulted in lower rates of moisture loss and color development reactions. DSC studies revealed that the extent of starch gelatinization was also lower in the case of air fried product. In addition, the two types of frying also resulted in products having significantly different texture and sensory characteristics.
Resumo:
This article discusses planning in the global South-East while focusing on the specific context of social divides, political turmoil and conflict situations. The article proposes a five-way framework based on political science and planning to theory to analyse such contexts. The article explores the case of Beirut, Lebanon that has undergone several episodes of internal and external conflicts resulting in a society splintered along sectarianism. Three Two case studies of open urban spaces and their public activities are analysed using the five-way framework The discussion indicates how economic liberalism that is prevalent in countries of the South-East, along with place-based identities, interest-based identities, consensus orientated processes and institutionalism might facilitate a cultivation of deep values away from a narrowly constructed identity. The article argues that planners should understand the options for positive action that aim to bridge deep divisions and suggests that the five-way framework provides a reference for contextualising in different ways to suit particular contexts. Therefore, the framework is not necessarily restricted to the South-East but could be applicable to any context which manifests deep divisions.
Resumo:
Smoking has been positively and fruit and vegetable intake has been negatively associated with cervical cancer, the second most common cancer among women worldwide. However, a lower consumption of fruits and reduced serum carotenoids have been observed among smokers. It is not known whether the smoking effect on the risk of cervical neoplasia is modified by a low intake of fruits and vegetables. The present study examined the combined effects of tobacco smoking and diet using a validated FFQ and serum carotenoid and tocopherol levels on cervical intraepithelial neoplasia grade 3 (CIN3) risk in a hospital-based case-control study conducted in Sao Paulo, Brazil, between 2003 and 2005. The sample comprised 231 incident, histologically confirmed cases of CIN3 and 453 controls. A low intake (<= 39 g) of dark-green and deep-yellow vegetables and fruits without tobacco smoking had a lesser effect on CIN3 (OR 1.14; 95% CI 0.49, 2.65) than among smokers with higher intake (>= 40 g; OR 1.83; 95% CI 0.73, 4.62) after adjusting for confounders. The OR for the joint exposure of tobacco smoking and low intake of vegetables and fruits was greater (3.86; 95% CI 1.74, 8.57; P for trend < 0.001) compared with non-smokers with higher intake after adjusting for confounding variables and human papillomavirus status. Similar results were observed for total fruit, serum total carotene (including beta-, alpha-and gamma-carotene) and tocopherols. These findings suggest that the effect of nutritional factors on CIN3 is modified by smoking.
Resumo:
The aim of this study was to evaluate the effect of edible coatings based on methylcellulose (MC) and cassava starch (CS) to reduce oil uptake and improve water retention of chicken nuggets during deep fat frying. Edible coatings were prepared with I g of MC/100 g solution and 4 g of CS/100 g solution, with 25 or 55 g glycerol/100 g biopolymer. These solutions were applied to nugget samples before battering. Pre-fried and fried nuggets were analyzed to determine lipid and water contents. Color and texture were also measured in the fried nuggets. In general, there was no effect of the two concentrations of plasticizer of either of the biopolymers on the water retention of whole nuggets. But, higher oil uptake reduction, and consequently, lower lipid content was observed on nuggets coated with CS and 25% plasticizer. The coated samples were darker and had a brighter yellow color when compared with the control. There was also a significant decrease in the shearing force of the fried coated samples, indicating reduced hardness of these samples.
Resumo:
In the south Sao Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Omega m) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Omega m) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m(3)) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (similar to 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO(2), H(2)O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the Sao Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Parana and Espinhaco (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (similar to 3%) carbonatites in their composition. The occurrence of a positive geoid anomaly (+ 10 m) and pre-tholeiites (age > 138 Ma), carbonatites and kimberlites along the west African continental margin (Angola and Namibia) reinforces the presumed age of the Sao Francisco-Congo craton rejuvenation to be prior to its fragmentation in the Lower Cretaceous. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.