995 resultados para Datum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first and last appearances of Quaternary planktonic foraminifers in the Great Australian Bight were evaluated using datum levels from magnetostatigraphy, oxygen isotope stratigraphy, and calcareous nannofossil biostratigraphy to determine whether they were synchronous or diachronous with open-ocean biostratigraphic events. The first appearance of Globorotalia truncatulinoides is diachronous at 1.6-1.7 Ma at Site 1127 and 1.1-1.2 at Sites 1129 and 1132, similar to other local appearances in high latitudes. All other datum levels, however, are synchronous with open-ocean events, including the first appearance of Globorotalia hirsuta and the last appearances of Globorotalia tosaensis and pink Globigerinoides ruber in the Indo-Pacific region. A local reappearance of Gt. hirsuta at ~0.12 Ma and the disappearance of Globorotalia crassaformis at ~0.10 Ma were found to be useful for local biostratigraphy. Age control at the bottom of all of the sections is poor at this time, but results suggest that sedimentation recommenced starting at ~1.9 Ma above the regional unconformity that marks the base of seismostratigraphic Sequence 2. Sediment accumulation is distinctly reduced in the lower Pleistocene compared to the upper Pleistocene, perhaps in part because of processes associated with several omission surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This preliminary report does not present the distribution of selected key planktonic species in each Leg 133 hole, but rather, extracts the best chronodatum levels in two sets of holes, which comprise the Queensland Trough and Townsville Trough transects. In general, the sampling interval was 1.5 m, but sometimes was larger. To convert the datum levels into time, the absolute ages of Berggren et al. (1985, doi:10.1144/GSL.MEM.1985.010.01.18) were used. Extinction levels were employed in the main, because they are the most easily recognized, the order of events seems to be consistent from hole to hole, and they correlate reasonably well with chronodatum levels obtained from nannofossil biostratigraphy (see Gartner et al., 1993, doi:10.2973/odp.proc.sr.133.213.1993).