986 resultados para Data Compression
Resumo:
Studies in Computational Intelligence, 616
Resumo:
During the last few years many research efforts have been done to improve the design of ETL (Extract-Transform-Load) systems. ETL systems are considered very time-consuming, error-prone and complex involving several participants from different knowledge domains. ETL processes are one of the most important components of a data warehousing system that are strongly influenced by the complexity of business requirements, their changing and evolution. These aspects influence not only the structure of a data warehouse but also the structures of the data sources involved with. To minimize the negative impact of such variables, we propose the use of ETL patterns to build specific ETL packages. In this paper, we formalize this approach using BPMN (Business Process Modelling Language) for modelling more conceptual ETL workflows, mapping them to real execution primitives through the use of a domain-specific language that allows for the generation of specific instances that can be executed in an ETL commercial tool.
Resumo:
Os recursos computacionais exigidos durante o processamento de grandes volumes de dados durante um processo de povoamento de um data warehouse faz com que a necessidade da procura de novas implementações tenha também em atenção a eficiência energética dos diversos componentes processuais que integram um qualquer sistema de povoamento. A lacuna de técnicas ou metodologias para categorizar e avaliar o consumo de energia em sistemas de povoamento de data warehouses é claramente notória. O acesso a esse tipo de informação possibilitaria a construção de sistemas de povoamento de data warehouses com níveis de consumo de energia mais baixos e, portanto, mais eficientes. Partindo da adaptação de técnicas aplicadas a sistemas de gestão de base de dados para a obtenção dos consumos energéticos da execução de interrogações, desenhámos e implementámos uma nova técnica que nos permite obter os consumos de energia para um qualquer processo de povoamento de um data warehouse, através da avaliação do consumo de cada um dos componentes utilizados na sua implementação utilizando uma ferramenta convencional. Neste artigo apresentamos a forma como fazemos tal avaliação, utilizando na demonstração da viabilidade da nossa proposta um processo de povoamento bastante típico em data warehouses – substituição encadeada de chaves operacionais -, que foi implementado através da ferramenta Kettle.
Resumo:
Worldwide, around 9% of the children are born with less than 37 weeks of labour, causing risk to the premature child, whom it is not prepared to develop a number of basic functions that begin soon after the birth. In order to ensure that those risk pregnancies are being properly monitored by the obstetricians in time to avoid those problems, Data Mining (DM) models were induced in this study to predict preterm births in a real environment using data from 3376 patients (women) admitted in the maternal and perinatal care unit of Centro Hospitalar of Oporto. A sensitive metric to predict preterm deliveries was developed, assisting physicians in the decision-making process regarding the patients’ observation. It was possible to obtain promising results, achieving sensitivity and specificity values of 96% and 98%, respectively.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
Rockburst is characterized by a violent explosion of a block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoided and/or managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are undergoing at the Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing and the system is described. A large number of rockburst tests were performed and their information collected, stored in a database and analyzed. Data Mining (DM) techniques were applied to the database in order to develop predictive models for the rockburst maximum stress (σRB) and rockburst risk index (IRB) that need the results of such tests to be determined. With the developed models it is possible to predict these parameters with high accuracy levels using data from the rock mass and specific project.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−1 of proton--proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model.
Resumo:
Searches are performed for resonant and non-resonant Higgs boson pair production in the hh→γγbb¯ final state using 20 fb−1 of proton--proton collisions at a center-of-mass energy of 8TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non--resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The corresponding limit observed for a narrow resonance ranges between 0.8 and 3.5 pb as a function of its mass.
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
The study of the interaction between hair filaments and formulations or peptides is of utmost importance in fields like cosmetic research. Keratin intermediate filaments structure is not fully described, limiting the molecular dynamics (MD) studies in this field although its high potential to improve the area. We developed a computational model of a truncated protofibril, simulated its behavior in alcoholic based formulations and with one peptide. The simulations showed a strong interaction between the benzyl alcohol molecules of the formulations and the model, leading to the disorganization of the keratin chains, which regress with the removal of the alcohol molecules. This behavior can explain the increase of peptide uptake in hair shafts evidenced in fluorescence microscopy pictures. The model developed is valid to computationally reproduce the interaction between hair and alcoholic formulations and provide a robust base for new MD studies about hair properties. It is shown that the MD simulations can improve hair cosmetic research, improving the uptake of a compound of interest.
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus.