990 resultados para Datação 14C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tree-ring series were collected for radiocarbon analyses from the vicinity of Paks nuclear power plant (NPP) and a background area (Dunaföldvár) for a 10-yr period (2000–2009). Samples of holocellulose were prepared from the wood and converted to graphite for accelerator mass spectrometry (AMS) 14C measurement using the MICADAS at ETH Zürich. The 14C concentration data from these tree rings was compared to the background tree rings for each year. The global decreasing trend of atmospheric 14C activity concentration was observed in the annual tree rings both in the background area and in the area of the NPP. As an average of the past 10 yr, the excess 14C emitted by the pressurized-water reactor (PWR) NPP to the atmosphere shows only a slight systematic excess (~6‰) 14C in the annual rings. The highest 14C excess was 13‰ (in 2006); however, years with the same 14C level as the background were quite frequent in the tree-ring series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleoenvironmental and paleoclimate reconstructions based on molecular proxies, such as those derived from leaf-wax biomarkers, in loess-paleosol sequences represent a promising line of investigation in Quaternary research. The main premise of such reconstructions is the synsedimentary deposition of biomarkers and dust, which has become a debated subject in recent years. This study uses two independent approaches to test the stratigraphic integrity of leaf-wax biomarkers: (i) long-chain n-alkanes and fatty acids are quantified in two sediment-depth profiles in glacial till on the Swiss Plateau, consisting of a Holocene topsoil and the underlying B and C horizons. Since glacial sediments are initially very poor in organic matter, significant amounts of leaf-wax biomarkers in the B and C horizons of those profiles would reflect postsedimentary root-derived or microbial contributions. (ii) Compound-specific radiocarbon measurements are conducted on n-alkanes and n-alkanoic (fatty) acids from several depth intervals in the loess section "Crvenka", Serbia, and the results are compared to independent estimates of sediment age. We find extremely low concentrations of plant-wax n-alkanes and fatty acids in the B and C horizons below the topsoils in the sediment profiles. Moreover, compound-specific radiocarbon analysis yields plant-wax 14C ages that agree well with published luminescence ages and stratigraphy of the Serbian loess deposit. Both approaches confirm that postsedimentary, root-derived or microbial contributions are negligible in the two investigated systems. The good agreement between the ages of odd and even homologues also indicates that reworking and incorporation of fossil leaf waxes is not particularly relevant either.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiocarbon (14C) analysis is a unique tool to distinguish fossil/nonfossil sources of carbonaceous aerosols. We present 14C measurements of organic carbon (OC) and total carbon (TC) on highly time resolved filters (3–4 h, typically 12 h or longer have been reported) from 7 days collected during California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 in Pasadena. Average nonfossil contributions of 58% ± 15% and 51% ± 15% were found for OC and TC, respectively. Results indicate that nonfossil carbon is a major constituent of the background aerosol, evidenced by its nearly constant concentration (2–3 μgC m−3). Cooking is estimated to contribute at least 25% to nonfossil OC, underlining the importance of urban nonfossil OC sources. In contrast, fossil OC concentrations have prominent and consistent diurnal profiles, with significant afternoon enhancements (~3 μgC m−3), following the arrival of the western Los Angeles (LA) basin plume with the sea breeze. A corresponding increase in semivolatile oxygenated OC and organic vehicular emission markers and their photochemical reaction products occurs. This suggests that the increasing OC is mostly from fresh anthropogenic secondary OC (SOC) from mainly fossil precursors formed in the western LA basin plume. We note that in several European cities where the diesel passenger car fraction is higher, SOC is 20% less fossil, despite 2–3 times higher elemental carbon concentrations, suggesting that SOC formation from gasoline emissions most likely dominates over diesel in the LA basin. This would have significant implications for our understanding of the on-road vehicle contribution to ambient aerosols and merits further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since multi-site reconstructions are less affected by site-specific climatic effects and artefacts, regional palaeotemperature reconstructions based on a number of sites can provide more robust estimates of centennial- to millennial-scale temperature trends than individual, site-specific records. Furthermore, reconstructions based on multiple records are necessary for developing continuous climate records over time scales longer than covered by individual sequences. Here, we present a procedure for developing such reconstructions based on relatively short (centuries to millennia), discontinuously sampled records as are typically developed when using biotic proxies in lake sediments for temperature reconstruction. The approach includes an altitudinal correction of temperatures, an interpolation of individual records to equal time intervals, a stacking procedure for sections of the interval of interest that have the same records available, as well as a splicing procedure to link the individual stacked records into a continuous reconstruction. Variations in the final, stacked and spliced reconstruction are driven by variations in the individual records, whereas the absolute temperature values are determined by the stacked segment based on the largest number of records. With numerical simulations based on the NGRIP δ18O record, we demonstrate that the interpolation and stacking procedure provides an approximation of a smoothed palaeoclimate record if based on a sufficient number of discontinuously sampled records. Finally, we provide an example of a stacked and spliced palaeotemperature reconstruction 15000–90 calibrated 14C yr BP based on six chironomid records from the northern and central Swiss Alps and eastern France to discuss the potential and limitations of this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g., often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C) analyses of the elemental (EC) and organic (OC) carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15%) followed by organic matter (OM) (34 ± 13%) and EC (5 ± 2%). The non-fossil fractions of OC (fNF,OC) ranged on average from 69 to 85 and 80 to 95% for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~ 30% to OC. The non-fossil fraction of EC (fNF,EC), entirely attributable to primary wood burning, was on average 42 ± 13 and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF), which seems to suggest that a considerable amount of OCF is secondary, from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+) indicate that residential wood burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water-soluble K+ shows different ratios for stations north and south of the Alps (most likely because of differences in burning technologies) for these two regions in Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing bservation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14°C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon (14C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The 14C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining 14C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palaeoecological studies in the "Alpe d'Essertse" area have provided much information about Vegetation changes and timberline fluctuations during the Holocene In this study we repeated previous biostratigraphic investigations using plant macrofossils to improve their temporal and taxonomie resolution and to test their reliability. By analyzing 0.5-cm layers of a lake sediment we reached a temporal resolution of 44 years, and we were able to reconstruct Vegetation changes in the surrounding area at species level. The sedimentary record analyzed extends from the Late-Glacial to the late Holocene Alpine grasslands (12'000-11'000 cal. BP) were afforested by Larix decidua, Juniperus nana, and Pinus cembra (11'000-9'600 cal. B.P). Stable subalpine larch-stone pine-forests (9'600^4'900 cal. BP) were followed by shrublands and meadows as a consequence of the climatically and anthropogenically induced destruction of forest Vegetation (4'900-2'600 cal. BP). Changes in the abundance of P. cembra and L. decidua needles as well as changes of the other taxa were consistent with those found in previous studies from the same lake. Our results demonstrate that plant-macrofossil records can be reproduced spatially and temporally on separate cores with independent 14C chronologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dating lake sediments by accelerator mass spectrometry (AMS) 14C analysis of terrestrial plant macrofossils overcomes one of the main problems associated with dating bulk sediment samples, i.e., the presence of old organic matter. Even so, many AMS dates from arctic and boreal sites appear to misrepresent the age of the sediment. To understand the nature of these apparent dating anomalies better, we conducted a series of 14C dating experiments using samples from Alaskan and Siberian lake-sediment cores. First, to test whether our analytical procedures introduced a sample-mass bias, we obtained 14C dates for different-sized pieces of single woody macrofossils. In these sample-mass experiments, statistically equivalent ages were found for samples as small as 0.05 mg C. Secondly, to assess whether macrofossil type influenced dating results, we conducted sample-type experiments in which 14C dates were obtained for different macrofossil types sieved from the same depth in the sediment. We dated materials from multiple levels in sediment cores from Upper Capsule Lake (North Slope, northern Alaska) and Grizzly Lake (Copper River Basin, southern Alaska) and from single depths in other records from northern Alaska. In several of the experiments there were significant discrepancies between dates for different plant tissues, and in most cases wood and charcoal were older than other macrofossil types, usually by several hundred years. This pattern suggests that 14C dates for woody macrofossils may misrepresent the age of the sediment by centuries, perhaps because of their longer terrestrial residence time and the potential in-built age of longlived plants. This study identifies why some 14C dates appear to be inconsistent with the overall age-depth trend of a lake-sediment record, and it may guide the selection of 14C samples in future studies.