918 resultados para Daniel Link
Resumo:
Current diagnostic definitions of psychiatric disorders based on collections of symptoms encompass very heterogeneous populations and are thus likely to yield spurious results when exploring biological correlates of mental disturbances. It has been suggested that large studies of biomarkers across diagnostic entities may yield improved clinical information. Such a view is based on the concept of assessment as a collection of symptoms devoid of any clinical judgment and interpretation. Yet, important advances have been made in recent years in clinimetrics, the science of clinical judgment. The current clinical taxonomy in psychiatry, which emphasizes reliability at the cost of clinical validity, does not include effects of comorbid conditions, timing of phenomena, rate of progression of an illness, responses to previous treatments, and other clinical distinctions that demarcate major prognostic and therapeutic differences among patients who otherwise seem to be deceptively similar since they share the same psychiatric diagnosis. Clinimetrics may provide the missing link between clinical states and biomarkers in psychiatry, building pathophysiological bridges from clinical manifestations to their neurobiological counterparts.
Resumo:
OBJECTIVE The link between CNS penetration of antiretrovirals and AIDS-defining neurologic disorders remains largely unknown.METHODS: HIV-infected, antiretroviral therapy-naive individuals in the HIV-CAUSAL Collaboration who started an antiretroviral regimen were classified according to the CNS Penetration Effectiveness (CPE) score of their initial regimen into low (<8), medium (8-9), or high (>9) CPE score. We estimated "intention-to-treat" hazard ratios of 4 neuroAIDS conditions for baseline regimens with high and medium CPE scores compared with regimens with a low score. We used inverse probability weighting to adjust for potential bias due to infrequent follow-up.RESULTS: A total of 61,938 individuals were followed for a median (interquartile range) of 37 (18, 70) months. During follow-up, there were 235 cases of HIV dementia, 169 cases of toxoplasmosis, 128 cases of cryptococcal meningitis, and 141 cases of progressive multifocal leukoencephalopathy. The hazard ratio (95% confidence interval) for initiating a combined antiretroviral therapy regimen with a high vs low CPE score was 1.74 (1.15, 2.65) for HIV dementia, 0.90 (0.50, 1.62) for toxoplasmosis, 1.13 (0.61, 2.11) for cryptococcal meningitis, and 1.32 (0.71, 2.47) for progressive multifocal leukoencephalopathy. The respective hazard ratios (95% confidence intervals) for a medium vs low CPE score were 1.01 (0.73, 1.39), 0.80 (0.56, 1.15), 1.08 (0.73, 1.62), and 1.08 (0.73, 1.58).CONCLUSIONS: We estimated that initiation of a combined antiretroviral therapy regimen with a high CPE score increases the risk of HIV dementia, but not of other neuroAIDS conditions.
Resumo:
dargest. von Paul Volz
Resumo:
[M. Roest]
Resumo:
Individuals differ widely in how steeply they discount future rewards. The sources of these stable individual differences in delay discounting (DD) are largely unknown. One candidate is the COMT Val158Met polymorphism, known to modulate prefrontal dopamine levels and affect DD. To identify possible neural mechanisms by which this polymorphism may contribute to stable individual DD differences, we measured 73 participants' neural baseline activation using resting electroencephalogram (EEG). Such neural baseline activation measures are highly heritable and stable over time, thus an ideal endophenotype candidate to explain how genes may influence behavior via individual differences in neural function. After EEG-recording, participants made a series of incentive-compatible intertemporal choices to determine the steepness of their DD. We found that COMT significantly affected DD and that this effect was mediated by baseline activation level in the left dorsal prefrontal cortex (DPFC): (i) COMT had a significant effect on DD such that the number of Val alleles was positively correlated with steeper DD (higher numbers of Val alleles means greater COMT activity and thus lower dopamine levels). (ii) A whole-brain search identified a cluster in left DPFC where baseline activation was correlated with DD; lower activation was associated with steeper DD. (iii) COMT had a significant effect on the baseline activation level in this left DPFC cluster such that a higher number of Val alleles was associated with lower baseline activation. (iv) The effect of COMT on DD was explained by the mediating effect of neural baseline activation in the left DPFC cluster. Our study thus establishes baseline activation level in left DPFC as salient neural signature in the form of an endophenotype that mediates the link between COMT and DD.
Resumo:
Reputation formation pervades human social life. In fact, many people go to great lengths to acquire a good reputation, even though building a good reputation is costly in many cases. Little is known about the neural underpinnings of this important social mechanism, however. In the present study, we show that disruption of the right, but not the left, lateral prefrontal cortex (PFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) diminishes subjects' ability to build a favorable reputation. This effect occurs even though subjects' ability to behave altruistically in the absence of reputation incentives remains intact, and even though they are still able to recognize both the fairness standards necessary for acquiring and the future benefits of a good reputation. Thus, subjects with a disrupted right lateral PFC no longer seem to be able to resist the temptation to defect, even though they know that this has detrimental effects on their future reputation. This suggests an important dissociation between the knowledge about one's own best interests and the ability to act accordingly in social contexts. These results link findings on the neural underpinnings of self-control and temptation with the study of human social behavior, and they may help explain why reputation formation remains less prominent in most other species with less developed prefrontal cortices.
Resumo:
Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.
Resumo:
The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.
Resumo:
[Hrsg.: David Gunzburg]