994 resultados para Damage Functions
Resumo:
Once the seed has germinated, the plant is forced to face all the environmental changes in its habitat. In order to survive, plants have evolved a number of different acclimation systems. The primary reaction behind plant growth and development is photosynthesis. Photosynthesis captures solar energy and converts it into chemical form. Photosynthesis in turn functions under the control of environmental cues, but is also affected by the growth, development, and metabolic state of a plant. The availability of solar energy fluctuates continuously, requiring non-stop adjustment of photosynthetic efficiency in order to maintain the balance between photosynthesis and the requirements and restrictions of plant metabolism. Tight regulation is required, not only to provide sufficient energy supply but also to prevent the damage caused by excess energy. The very first reaction of photosynthesis is splitting of water into the form of oxygen, hydrogen, and electrons. This most fundamental reaction of life is run by photosystem II (PSII), and the energy required for the reaction is collected by the light harvesting complex II (LHCII). Several proteins of the PSII-LHCII complex are reversibly phosphorylated according to the energy balance between photosynthesis and metabolism. Thylakoid protein phosphorylation has been under extensive investigation for over 30 years, yet the physiological role of phosphorylation remains elusive. Recently, the kinases behind the phosphorylation of PSII-LHCII proteins (STN7 and STN8) were identified and the knockout mutants of these kinases became available, providing powerful tools to elucidate the physiological role of PSII-LHCII phosphorylation. In my work I have used the stn7 and stn8 mutants in order to clarify the role of PSII-LHCII phosphorylation in regulation and protection of the photosynthetic machinery according to environmental cues. I show that STN7- dependent PSII-LHCII protein phosphorylation is required to balance the excitation energy distribution between PSII and PSI especially under low light intensities when the excitation energy transfer from LHC to PSII and PSI is efficient. This mechanism differs from traditional light quality-induced “state 1” – “state 2” transition and ensures fluent electron transfer from PSII to PSI under low light, yet having highest physiological relevance under fluctuating light intensity. STN8-dependent phosphorylation of PSII proteins, in turn, is required for fluent turn-over of photodamaged PSII complexes and has the highest importance upon prolonged exposure of the photosynthetic apparatus to excess light.
Resumo:
Probiotic lactobacilli and bifidobacteria in the mouth – in vitro studies on saliva-mediated functions and acid production Probiotics are viable bacteria which, when used in adequate amounts, are beneficial to the health of the host. Although most often related to intestinal health, probiotic bacteria can be found also in the mouth after consumption of products that contain them. This study aimed at evaluating the oral effects of probiotic bacteria already in commercial use. In a series of in vitro studies, the oral colonisation potential of different probiotic bacteria, their acid production and potential saliva-mediated effects on oral microbial ecology were investigated. The latter included effects on the salivary pellicle, the adhesion of other bacteria, and the activation of the peroxidase system. Streptococcus mutans, Streptococcus gordonii, Aggregatibacter actinomycetemcomitans and Helicobacter pylori were used as bacterial indicators of the studied phenomena. There were significant differences between the probiotic strains in their colonisation potential. They all were acidogenic, although using different sugars and sugar alcohols. However, their acid production could be inhibited by the peroxidase system. Based on the results, it can be suggested that probiotic bacteria might influence the oral microbiota by different, partly species or strain-specific means. These include the inhibition of bacterial adhesion, modification of the enamel pellicle, antimicrobial activity, and activation of the peroxidase system. To conclude, probiotic strains differed from each other in their colonisation potential and other oral effects as evaluated in vitro. Both positive and potentially harmful effects were observed, but the significance of the perceived results needs to be further evaluated in vivo.
Resumo:
To investigate oxidative lesions and strand breaks induction by singlet molecular oxygen (¹O2), supercoiled-DNA plasmid was treated with thermo-dissociated DHPNO2 and photoactivated-methylene blue. DNA lesions were detected by Fpg that cleaves DNA at certain oxidized bases, and T4-endoV, which cleaves DNA at cyclobutane pyrimidine dimers and apurinic/apyrimidinic (AP) sites. These cleavages form open relaxed-DNA structures, which are discriminated from supercoiled-DNA. DHPNO2 or photoactivated-MB treatments result in similar plasmid damage profile: low number of single-strand breaks or AP-sites and high frequency of Fpg-sensitive sites; confirming that base oxidation is the main product for both reactions and that ¹O2 might be the most likely intermediate that reacts with DNA.
Resumo:
A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.
Resumo:
The effects of pulp processing on softwood fiber properties strongly influence the properties of wet and dry paper webs. Pulp strength delivery studies have provided observations that much of the strength potential of long fibered pulp is lost during brown stock fiber line operations where the pulp is merely washed and transferred to the subsequent processing stages. The objective of this work was to study the intrinsic mechanisms which maycause fiber damage in the different unit operations of modern softwood brown stock processing. The work was conducted by studying the effects of industrial machinery on pulp properties with some actions of unit operations simulated in laboratory scale devices under controlled conditions. An optical imaging system was created and used to study the orientation of fibers in the internal flows during pulp fluidization in mixers and the passage of fibers through the screen openings during screening. The qualitative changes in fibers were evaluated with existing and standardized techniques. The results showed that each process stage has its characteristic effects on fiber properties: Pulp washing and mat formation in displacement washers introduced fiber deformations especially if the fibers entering the stage were intact, but it did not decrease the pulp strength properties. However, storage chests and pulp transfer after displacement washers contributed to strength deterioration. Pulp screening proved to be quite gentle, having the potential of slightly evening out fiber deformations from very deformed pulps and vice versa inflicting a marginal increase in the deformation indices if the fibers were previously intact. Pulp mixing in fluidizing industrial mixers did not have detrimental effects on pulp strength and had the potential of slightly evening out the deformations, provided that the intensity of fluidization was high enough to allow fiber orientation with the flow and that the time of mixing was short. The chemical and mechanical actions of oxygen delignification had two distinct effects on pulp properties: chemical treatment clearly reduced pulp strength with and without mechanical treatment, and the mechanical actions of process machinery introduced more conformability to pulp fibers, but did not clearly contribute to a further decrease in pulp strength. The chemical composition of fibers entering the oxygen stage was also found to affect the susceptibility of fibers to damage during oxygen delignification. Fibers with the smallest content of xylan were found to be more prone to irreversibledeformations accompanied with a lower tensile strength of the pulp. Fibers poor in glucomannan exhibited a lower fiber strength while wet after oxygen delignification as compared to the reference pulp. Pulps with the smallest lignin content on the other hand exhibited improved strength properties as compared to the references.
Resumo:
Electricity distribution network operation (NO) models are challenged as they are expected to continue to undergo changes during the coming decades in the fairly developed and regulated Nordic electricity market. Network asset managers are to adapt to competitive technoeconomical business models regarding the operation of increasingly intelligent distribution networks. Factors driving the changes for new business models within network operation include: increased investments in distributed automation (DA), regulative frameworks for annual profit limits and quality through outage cost, increasing end-customer demands, climatic changes and increasing use of data system tools, such as Distribution Management System (DMS). The doctoral thesis addresses the questions a) whether there exist conditions and qualifications for competitive markets within electricity distribution network operation and b) if so, identification of limitations and required business mechanisms. This doctoral thesis aims to provide an analytical business framework, primarily for electric utilities, for evaluation and development purposes of dedicated network operation models to meet future market dynamics within network operation. In the thesis, the generic build-up of a business model has been addressed through the use of the strategicbusiness hierarchy levels of mission, vision and strategy for definition of the strategic direction of the business followed by the planning, management and process execution levels of enterprisestrategy execution. Research questions within electricity distribution network operation are addressed at the specified hierarchy levels. The results of the research represent interdisciplinary findings in the areas of electrical engineering and production economics. The main scientific contributions include further development of the extended transaction cost economics (TCE) for government decisions within electricity networks and validation of the usability of the methodology for the electricity distribution industry. Moreover, DMS benefit evaluations in the thesis based on the outage cost calculations propose theoretical maximum benefits of DMS applications equalling roughly 25% of the annual outage costs and 10% of the respective operative costs in the case electric utility. Hence, the annual measurable theoretical benefits from the use of DMS applications are considerable. The theoretical results in the thesis are generally validated by surveys and questionnaires.
Resumo:
This study presents the information required to describe the machine and device resources in the turret punch press environment which are needed for the development of the analysing method for automated production. The description of product and device resources and their interconnectedness is the starting point for method comparison the development of expenses, production planning and the performance of optimisation. The manufacturing method cannot be optimized unless the variables and their interdependence are known. Sheet metal parts in particular may then become remarkably complex, and their automatic manufacture may be difficult or, with some automatic equipment, even impossible if not know manufacturing properties. This thesis consists of three main elements, which constitute the triangulation. In the first phase of triangulation, the manufacture occuring on a turret punch press is examined in order to find the factors that affect the efficiency of production. In the second phase of triangulation, the manufacturability of products on turret punch presses is examined through a set of laboratory tests. The third phase oftriangulation involves an examination of five industry parts. The main key findings of this study are: all possible efficiency in high automation level machining cannot be achieved unless the raw materials used in production and the dependencies of the machine and tools are well known. Machine-specific manufacturability factors for turret punch presses were not taken into account in the industrial case samples. On the grounds of the performed tests and industrial case samples, the designer of a sheet metal product can directly influence the machining time, material loss, energy consumption and the number of tools required on a turret punch press by making decisions in the way presented in the hypothesis of thisstudy. The sheet metal parts to be produced can be optimised to bemanufactured on a turret punch press when the material to be used and the kinds of machine and tool options available are known. This provides in-depth knowledge of the machine and tool properties machine and tool-specifically. None of the optimisation starting points described here is a separate entity; instead, they are all connected to each other.
Resumo:
The damage and the resistance levels of cultivars and accessions of common beans rescued in the South and mountain regions of Espírito Santo State, Brazil, to M. incognita race 3 and M. javanica parasitism were evaluated under a greenhouse. Four rescued bean genotypes ("FORT-10", "FORT-13", "FORT-16" and "FORT-19") and 2 commercial cultivars: "Pérola", and "Aporé", were tested. The cultivar "Rico-23" was included as standard of susceptibility to nematodes and non-inoculated plants constituted the control. Thus, the experiment was carried out in a completely randomized design in 3 (treatments considering nematodes) x 7 (genotypes and bean cultivars) factorial arrangement, with 7 replicates. Data were measured at 50 days after plant inoculation. For damage quantification, the following variables were evaluated: plant height (PHE), number of nodes (NNO), number of trifoliate leaves (NRT), fresh matter weight (FWE) and dry matter weight (DWE) of shoots, root weight (RWE), number of root nodules (NRO) and final population (FPO) of nematodes per root system. There were no significant differences between the effects caused by M. incognita and M. javanica, but both species showed inferior values of PHE, NNO, NRT, RWE, FWE and DWE compared to controls. Concerning the levels of resistance of bean plants to M. incognita, the genotypes "FORT-10", "FORT-13", "Aporé" and "FORT-16" behaved as moderately resistant, the cultivars "Rico 23" and "Pérola" low resistant, and the genotype "FORT-19" as highly susceptible. When parasitized by M. javanica, the beans "FORT-19", "Rico-23", "FORT-16" and "FORT-13" were low resistant, "Pérola" and "Aporé" susceptible and "FORT-10" highly susceptible.
Resumo:
This PhD thesis in Mathematics belongs to the field of Geometric Function Theory. The thesis consists of four original papers. The topic studied deals with quasiconformal mappings and their distortion theory in Euclidean n-dimensional spaces. This theory has its roots in the pioneering papers of F. W. Gehring and J. Väisälä published in the early 1960’s and it has been studied by many mathematicians thereafter. In the first paper we refine the known bounds for the so-called Mori constant and also estimate the distortion in the hyperbolic metric. The second paper deals with radial functions which are simple examples of quasiconformal mappings. These radial functions lead us to the study of the so-called p-angular distance which has been studied recently e.g. by L. Maligranda and S. Dragomir. In the third paper we study a class of functions of a real variable studied by P. Lindqvist in an influential paper. This leads one to study parametrized analogues of classical trigonometric and hyperbolic functions which for the parameter value p = 2 coincide with the classical functions. Gaussian hypergeometric functions have an important role in the study of these special functions. Several new inequalities and identities involving p-analogues of these functions are also given. In the fourth paper we study the generalized complete elliptic integrals, modular functions and some related functions. We find the upper and lower bounds of these functions, and those bounds are given in a simple form. This theory has a long history which goes back two centuries and includes names such as A. M. Legendre, C. Jacobi, C. F. Gauss. Modular functions also occur in the study of quasiconformal mappings. Conformal invariants, such as the modulus of a curve family, are often applied in quasiconformal mapping theory. The invariants can be sometimes expressed in terms of special conformal mappings. This fact explains why special functions often occur in this theory.
Resumo:
Some beetle species can have devastating economic impacts on forest and nursery industries. A recent example is Anophophora glabripennis, a species of beetle known in the United States as the ''Asian Longhorrned beetle'', which has damaged many American forests, and is a threat which can unintentionally reach south American countries, including Brazil. This work presents a new method based on X-ray computerized tomography (CT) and image processing for beetle injury detection in forests. Its results show a set of images with correct identification of the location of beetles in living trees as well as damage evaluation with time.