912 resultados para DOWN-SYNDROME
Resumo:
Case Reports
Resumo:
To analyse the impact of lack of MHC class II expression on the composition of the peripheral T-cell compartment in man, the expression characteristics of several membrane antigens were examined on peripheral blood lymphocytes (PBL) and cultured T cells derived from an MHC-class-II-deficient patient. No MHC class II expression could be detected on either PBL or activated T cells. Moreover, the expression of MHC class I was reduced both on PBL and in vitro activated T cells compared to the healthy control. However, the reduced expression of CD26 observed on the PBL of the patient was restored after in vitro expansion. Despite the presumably class-II-deficient thymic environment, a distinct but reduced single CD4+ T-cell population was observed in the PBL of the patient. After in vitro expansion, the percentage of CD4+ cells dropped even further, most likely due to a proliferative disadvantage, compared to the single CD8+ T-cell population. However, proliferation analysis showed that T-cell activation via the TcR/CD3 pathway is not affected by the MHC class II deficiency.
Resumo:
Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.
Resumo:
We have identified a patient with a number of neutrophil dysfunctions. The patient was a female baby who lived for 8 months. During her life, she developed severe bacterial infections and showed omphalitis, impaired wound healing, and a pronounced leukocytosis. She was not a patient with leukocyte adhesion deficiency, because all leukocyte CD18 complex proteins were expressed at normal levels. Yet, neutrophil polarization and chemotaxis to platelet-activating factor, leukotriene B4, or formyl-methionyl-leucyl-phenylalanine (FMLP) were completely absent. We found a strong defect in actin polymerization in response to chemotactic stimuli, but only a retarded or even normal reaction with other stimuli. This indicates that the cellular dysfunctions were not due to an intrinsic defect in actin metabolism. Instead, the regulation of actin polymerization with chemotactic stimuli seemed to be defective. We concentrated on FMLP-induced responses in the patient's neutrophils. Functions dependent on activation of complement receptor type 3, such as aggregation or adherence to endothelial cells, were normally induced. Binding to serum-coated coverslips was normal in cell number; however, spreading was not observed. Exocytosis from the specific granules was readily induced. In contrast, FMLP failed to induce a respiratory burst activity or degranulation of the azurophil granules. FMLP induced a normal increase in free intracellular Ca2+, but a decreased formation of diglycerides (especially the 1-O-alkyl,2-acyl compounds). Thus, we have described a patient whose neutrophils show a severe defect in functional activation via chemotaxin receptors, resulting in a selective absence of NADPH oxidase activity, exocytosis from the azurophil granules, and actin polymerization. Our findings show that actin polymerization for neutrophil spreading and locomotion is regulated differently from that for phagocytosis. Also, the release of azurophil and specific granule contents is clearly shown to be regulated in a different way.
Resumo:
This paper analyzes the robustness of the estimate of a positive productivity shock on hours to the presence of a possible unit root in hours. Estimations in levels or in first differences provide opposite conclusions. We rely on an agnostic procedure in which the researcher does not have to choose between a specification in levels or in first differences. We find that a positive productivity shock has a negative impact effect on hours, but the effect is much shorter lived, and disappears after two quarters. The effect becomes positive at business-cycle frequencies, although it is not significant. © 2005 Cambridge University Press.
Resumo:
BACKGROUND: The specific health benefits of meeting physical activity guidelines are unclear in older adults. We examined the association between meeting, not meeting, or change in status of meeting physical activity guidelines through walking and the 5-year incidence of metabolic syndrome in older adults. METHODS: A total of 1,863 Health, Aging, and Body Composition (Health ABC) Study participants aged 70-79 were followed for 5 years (1997-1998 to 2002-2003). Four walking groups were created based on self-report during years 1 and 6: Sustained low (Year 1, <150 min/week, and year 6, <150 min/week), decreased (year 1, >150 min/week, and year 6, <150 min/week), increased (year 1, <150 min/week, and year 6, >150 min/week), and sustained high (year 1, >150 min/week, and year 6, >150 min/week). Based on the Adult Treatment Panel III (ATP III) panel guidelines, the metabolic syndrome criterion was having three of five factors: Large waist circumference, elevated blood pressure, triglycerides, blood glucose, and low high-density lipoprotein (HDL) levels. RESULTS: Compared to the sustained low group, the sustained high group had a 39% reduction in odds of incident metabolic syndrome [adjusted odds ratio (OR) = 0.61; 95% confidence interval (CI), 0.40-0.93], and a significantly lower likelihood of developing the number of metabolic syndrome risk factors that the sustained low group developed over 5 years (beta = -0.16, P = 0.04). CONCLUSIONS: Meeting or exceeding the physical activity guidelines via walking significantly reduced the odds of incident metabolic syndrome and onset of new metabolic syndrome components in older adults. This protective association was found only in individuals who sustained high levels of walking for physical activity.
Resumo:
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+), but not paternal (m+/p-), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.
Resumo:
Chronic exposure of various cell types to adrenergic agonists leads to a decrease in cell surface beta 2-adrenergic receptor (beta 2AR) number. Sequestration of the receptor away from the cell surface as well as a down-regulation of the total number of cellular receptors are believed to contribute to this agonist-mediated regulation of receptor number. However, the molecular mechanisms underlying these phenomena are not well characterized. Recently, tyrosine residues located in the cytoplasmic tails of several membrane receptors, such as the low density lipoprotein and mannose-6-phosphate receptors, have been suggested as playing an important role in the agonist-induced internalization of these receptors. Accordingly, we assessed the potential role of two tyrosine residues in the carboxyl tail of the human beta 2AR in agonist-induced sequestration and down-regulation of the receptor. Tyr-350 and Tyr-354 of the human beta 2AR were replaced with alanine residues by site-directed mutagenesis and both wild-type and mutant beta 2AR were stably expressed in transformed Chinese hamster fibroblasts. The mutation dramatically decreased the ability of the beta 2AR to undergo isoproterenol-induced down-regulation. However, the substitution of Tyr-350 and Tyr-354 did not affect agonist-induced sequestration of the receptor. These results suggest that tyrosine residues in the cytoplasmic tail of human beta 2AR are crucial determinants involved in its down-regulation.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/published
Resumo:
To identify patients at increased risk of cardiovascular (CV) outcomes, apparent treatment-resistant hypertension (aTRH) is defined as having a blood pressure above goal despite the use of 3 or more antihypertensive therapies of different classes at maximally tolerated doses, ideally including a diuretic. Recent epidemiologic studies in selected populations estimated the prevalence of aTRH as 10% to 15% among patients with hypertension and that aTRH is associated with elevated risk of CV and renal outcomes. Additionally, aTRH and CKD are associated. Although the pathogenesis of aTRH is multifactorial, the kidney is believed to play a significant role. Increased volume expansion, aldosterone concentration, mineralocorticoid receptor activity, arterial stiffness, and sympathetic nervous system activity are central to the pathogenesis of aTRH and are targets of therapies. Although diuretics form the basis of therapy in aTRH, pathophysiologic and clinical data suggest an important role for aldosterone antagonism. Interventional techniques, such as renal denervation and carotid baroreceptor activation, modulate the sympathetic nervous system and are currently in phase III trials for the treatment of aTRH. These technologies are as yet unproven and have not been investigated in relationship to CV outcomes or in patients with CKD.
Resumo:
Two cases of Shone syndrome with severe mitral and aortic valve problems and pulmonary hypertension were referred for heart-lung transplantation. Severely elevated pulmonary vascular resistance (PVR) was confirmed as was severe periprosthetic mitral and aortic regurgitation. Based on the severity of the valve lesions in both patients, surgery was decided upon and undertaken. Both experienced early pulmonary hypertensive crises, one more than the other, that gradually subsided, followed by excellent recovery and reversal of pulmonary hypertension and PVR. These cases illustrate Braunwald's concept that pulmonary hypertension secondary to left-sided valve disease is reversible.
Resumo:
The purpose of this research was to use next generation sequencing to identify mutations in patients with primary immunodeficiency diseases whose pathogenic gene mutations had not been identified. Remarkably, four unrelated patients were found by next generation sequencing to have the same heterozygous mutation in an essential donor splice site of PIK3R1 (NM_181523.2:c.1425 + 1G > A) found in three prior reports. All four had the Hyper IgM syndrome, lymphadenopathy and short stature, and one also had SHORT syndrome. They were investigated with in vitro immune studies, RT-PCR, and immunoblotting studies of the mutation's effect on mTOR pathway signaling. All patients had very low percentages of memory B cells and class-switched memory B cells and reduced numbers of naïve CD4+ and CD8+ T cells. RT-PCR confirmed the presence of both an abnormal 273 base-pair (bp) size and a normal 399 bp size band in the patient and only the normal band was present in the parents. Following anti-CD40 stimulation, patient's EBV-B cells displayed higher levels of S6 phosphorylation (mTOR complex 1 dependent event), Akt phosphorylation at serine 473 (mTOR complex 2 dependent event), and Akt phosphorylation at threonine 308 (PI3K/PDK1 dependent event) than controls, suggesting elevated mTOR signaling downstream of CD40. These observations suggest that amino acids 435-474 in PIK3R1 are important for its stability and also its ability to restrain PI3K activity. Deletion of Exon 11 leads to constitutive activation of PI3K signaling. This is the first report of this mutation and immunologic abnormalities in SHORT syndrome.