796 resultados para DEFORMATION POTENTIALS
Resumo:
Based on the relationship Zener parameter (Z=second-phase size/second-phase volume fraction) vs. calcite grain size (dg), second-phase controlled aggregates and microstructures that are weakly affected by second-phases are discriminated. The latter are characterized by large but constant grain sizes, high calcite grain boundary fractions and crystallographic preferred orientations (CPO), while calcite grain size and calcite grain boundary fraction decrease continuously and CPO weakens with decreasing Z in second-phase controlled microstructures. These observations suggest that second-phase controlled microstructures predominantly deform via granular flow because pinning of calcite grain boundaries reduces the efficiency of dynamic recrystallization favoring mass transfer processes and grain boundary sliding. In contrast, the balance of grain size reduction and growth by dynamic recrystallization maintains a steady state grain size in microstructures that are only weakly affected by second-phases promoting a predominance of dislocation creep. With increasing temperature, the relationship between Z and dg persists but the calcite grain size increases continuously. Based on microstructures, the energy of each modifying process is calculated and its relative contribution is compared with energies of the competing processes (surface energy, dragging energy, dynamic recrystallization energy). The steady state microstructures result from a temperature-dependent energy minimization procedure of the system.
Resumo:
Grey and white carbonate mylonites were collected along thrust planes of the Helvetic Alps. They are characterised by very small grain sizes and non-random grain shape (SPO) and crystallographic preferred orientation (CPO). Presumably they deformed in the field of grain size sensitive flow by recrystallisation accommodated intracrystalline deformation in combination with granular flow. Both mylonites show a similar mean grain size, but in the grey mylonites the grain size range is larger, the grain shapes are more elongate and the dynamically recrystallised calcite grains are more often twinned. Grey mylonites have an oblique CPO, while the CPO in white mylonites is symmetric with respect to the shear plane. Combustion analysis and TEM investigations revealed that grey mylonites contain a higher amount of highly structured kerogens with particle sizes of a few tens of nanometers, which are finely dispersed at the grain boundaries. During deformation of the rock, nano-scale particles reduced the migration velocity of grain boundaries by Zener drag resulting in slower recrystallisation rates of the calcite aggregate. In the grey mylonites, more strain increments were accommodated by individual grains before they became refreshed by dynamic recrystallisation than in white mylonites, where grain boundary migration was less hindered and recrystallisation cycles were faster. Consequently, grey mylonites represent ‘deformation’ microfabrics while white mylonites are characterised by ‘recrystallisation’ microfabrics. Field geologists must utilise this different deformation behavior when applying the obliquity in CPO and SPO of the respective mylonites as reliable shear sense indicators.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
The injectivity, containment and storage capacity of sandstone reservoirs in a field in the Coastal Swamp depobelt of the onshore eastern Niger Delta were evaluated using wireline logs and seismic data to assess their potentials for carbon dioxide storage and geosequestration. The reservoir formation consists of multilayered alternating beds of sandstone and shale cap rocks. Active seismicity and fracturing intensity are low and growth faults provide the reservoir sealing mechanisms. Three reservoirs were delineated at depths between 3319 m and 3539 m which will keep injected CO2 in a supercritical state. The reservoir depth of at least 800 m, porosity and permeability of more than 10 percent and 20 mD, and a caprock thickness of at least 10 m, in addition to geothermal gradients of 13.46 to 33.66 ºC /km are the ideal conditions for the efficacy of storage. Comparison of the derived reservoir and seal properties such as porosity, permeability, thickness and depth with the minimum recommended site selection criteria shows that the reservoirs are potential candidates for carbon geosequestration with a total theoretical storage capacity of 147MM tons.
Resumo:
Tetracarpidium conophorum (TC) (Euphorbiaceae) is a perennial woody climbing shrub in low bush forest of some parts of West Africa and used among the natives for relief of ailments accompanying pain and inflammation. In this study, the analgesic and anti-inflammatory effects of the methanolic extract (METC) and fractions (ethyl acetate, F1 and n-hexane, F2) of Tetracarpidium conophorum leaf were evaluated in rat and mice. The analgesic activity was evaluated using acetic acid-induced writhing, formalin-induced paw licking and hot plate test models. Carrageenan-induced paw oedema was used to assess anti-inflammatory activity in rats. The mechanism of action of (TC) was explored by the use of naloxone, a non-selective opioid receptor blocker. The highest analgesic effect was observed in F2 extract at 57.21% inhibition and was further studied on various analgesic and anti-inflammatory models in graded doses. F2 significantly inhibited the late phase of formalin-induced paw licking and prolong hot plate latency at 55±1°C. The n-hexane fraction also significantly inhibited carrageenan-induced paw oedema in rats at 100 and 200mg/kg doses significantly (p< 0.001) and reduced paw licking response by 85.08% compared with control. Naloxone, an opioid receptor antagonist, did not significantly affect the changes observed with n-hexane fraction, thus ruling out the possibility of the involvement of opioid receptors in the analgesic actions of Tetracarpidium conophorum. Phytochemical screening showed that the leaf extracts contain alkaloids, tannins, saponins and cardenolides. The investigations showed that Tetracarpidium conophorum possesses significant anti-nociceptive and anti-inflammatory activities that should be explored.
Resumo:
The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net
Resumo:
Part 11: Reference and Conceptual Models
Resumo:
Purpose: To evaluate the anti-vibrio potentials of acetone and aqueous leaf extracts of Ocimum gratissimum and determine its relevance in the treatment of vibrios infection. Methods: The agar-well diffusion method was used for screening the extracts for their anti-vibrio activity. Broth micro-dilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts. Time-kill assay was used to assess bactericidal and/or bacteriostatic activity. Results: The acetone extract showed activity against 47.5 % (19/40) of the test bacteria, while the aqueous extract had activity against 30 % (12/40). MIC and MBC values range for the acetone extract were 0.625 – 5.0 mg/mL and 2.5 – 10 mg/mL respectively. The range of MIC exhibited by the antibiotic (gentamicin) against the vibrios is 0.002 mg/mL and >0.256 mg/mL. Significant reduction in the bacterial density was at 2 × MIC after a 4 h interaction period, while bacterial density after 6 and 8 h interactions with extract was highly bactericidal. Growth inhibition and efficacy of the crude acetone extract were observed to be both concentration- and time-dependent. Conclusion: The bacteriostatic and bactericidal activities observed for Ocimum gratissimum leaf suggest that the plant is a potential source of bioactive components that may be effective in the treatment of vibrios infections.
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
L'obiettivo di questo lavoro è quello di analizzare la potenza emessa da una carica elettrica accelerata. Saranno studiati due casi speciali: accelerazione lineare e accelerazione circolare. Queste sono le configurazioni più frequenti e semplici da realizzare. Il primo passo consiste nel trovare un'espressione per il campo elettrico e il campo magnetico generati dalla carica. Questo sarà reso possibile dallo studio della distribuzione di carica di una sorgente puntiforme e dei potenziali che la descrivono. Nel passo successivo verrà calcolato il vettore di Poynting per una tale carica. Useremo questo risultato per trovare la potenza elettromagnetica irradiata totale integrando su tutte le direzioni di emissione. Nell'ultimo capitolo, infine, faremo uso di tutto ciò che è stato precedentemente trovato per studiare la potenza emessa da cariche negli acceleratori.
Resumo:
Event-related potentials (ERP) have been proposed to improve the differential diagnosis of non-responsive patients. We investigated the potential of the P300 as a reliable marker of conscious processing in patients with locked-in syndrome (LIS). Eleven chronic LIS patients and 10 healthy subjects (HS) listened to a complex-tone auditory oddball paradigm, first in a passive condition (listen to the sounds) and then in an active condition (counting the deviant tones). Seven out of nine HS displayed a P300 waveform in the passive condition and all in the active condition. HS showed statistically significant changes in peak and area amplitude between conditions. Three out of seven LIS patients showed the P3 waveform in the passive condition and five of seven in the active condition. No changes in peak amplitude and only a significant difference at one electrode in area amplitude were observed in this group between conditions. We conclude that, in spite of keeping full consciousness and intact or nearly intact cortical functions, compared to HS, LIS patients present less reliable results when testing with ERP, specifically in the passive condition. We thus strongly recommend applying ERP paradigms in an active condition when evaluating consciousness in non-responsive patients.