708 resultados para DBD lamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’attività di tesi ha previsto la progettazione e realizzazione di sorgenti di plasma di non equilibrio a pressione atmosferica e l’individuazione delle condizioni operative ottimali per l’idrofobizzazione di materiali tessili. La prima parte delle attività di tesi hanno riguardato lo studio e l’approfondimento della letteratura scientifica al fine di individuare le sorgenti e i processi plasma assistiti per l’idrofobizzazione dei materiali. Relativamente alle sorgenti di plasma di non-equilibrio a pressione atmosferica, studi di letteratura riportano che sorgenti di tipo APPJ (Atmospheric Pressure Plasma Jet) consentono di effettuare un trattamento localizzato in un punto, mentre sorgenti DBD (Dielectric Barrier Discharge) risultano idonee a trattamenti di materiali large area. Per quanto riguarda i processi plasma assistiti, sulla base di quanto riportato in letteratura il processo di idrofobizzazione può avvenire principalmente mediante polimerizzazione di gas organici contenenti fluoro, introdotti nella regione di plasma, con la conseguente deposizione di coating fluorurati. Le attività sperimentali condotte durante la tesi hanno avuto l’obbiettivo di valutare la possibilità di rendere idrofobico un filato di fibra tessile naturale mediante l’utilizzo di una sorgente plasma jet operante con miscela di argon e gas organoflorurato. Il filato, messo in moto a diverse velocità, è stato fatto transitare attraverso la piuma di plasma. In particolare, si è passati da una velocità di movimentazione di 1 m/min a una di 10 m/min. I risultati ottenuti hanno evidenziato che maggiore è la velocità di movimentazione del filato attraverso la piuma di plasma, minore è il grado di idrofibizzazione raggiungibile sul filato stesso, in quanto minore è il tempo di esposizione del materiale al plasma. Infine, nell’ultima parte dell’attività di tesi, è stata progettata una sorgente DBD, che caratterizzata da una maggiore area di generazione del plasma rispetto alla sorgente plasma jet, consente di incrementare il tempo di esposizione del filato al plasma a parità di velocità di movimentazione del filato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiocarbon stratigraphy is an essential tool for high resolution paleoceanographic studies. Age models based on radiocarbon ages of foraminifera are commonly applied to a wide range of geochemical studies, including the investigation of temporal leads and lags. The critical assumption is that temporal coupling between foraminifera and other sediment constituents, including specific molecular organic compounds (biomarkers) of marine phytoplankton, e.g. alkenones, is maintained in the sediments. To test this critical assumption in the Benguela upwelling area, we have determined radiocarbon ages of total C37-C39 alkenones in 20 samples from two gravity cores and three multicorer cores. The cores were retrieved from the continental shelf and slope off Namibia, and samples were taken from Holocene, deglacial and Last Glacial Maximum core sections. The alkenone radiocarbon ages were compared to those of planktic foraminifera, total organic carbon, fatty acids and fine grained carbonates from the same samples. Interestingly, the ages of alkenones were 1000 to 4500 yr older than those of foraminifera in all samples. Such age differences may be the result of different processes: Bioturbation associated with grain size effects, lateral advection of (recycled) material and redeposition of sediment on upper continental slopes due to currents or tidal movement are examples for such processes. Based on the results of this study, the age offsets between foraminifera and alkenones in sediments from the upper continental slope off Namibia most probably do not result from particle-selective bioturbation processes. Resuspension of organic particles in response to tidal movement of bottom waters with velocities up to 25 cm/s recorded near the core sites is the more likely explanation. Our results imply that age control established using radiocarbon measurements of foraminifera may be inadequate for the interpretation of alkenone-based proxy data. Observed temporal leads and lags between foraminifera based data and data derived from alkenone measurements may therefore be secondary signals, i.e. the result of processes associated with particle settling and biological activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sea of Okhotsk is a marginal sea of the Pacific Ocean, which is characterized by strong variations in the productivity and sediment supply due to sea ice transport and river input. Furthermore the variations in the hydrological cycle determine the formation of the SOIW (Sea of Okhotsk Intermediate Water) which plays an important role in the ventilation processes in the intermediate water of the N-Pacific. Isotope data measured on planktonic and benthic foraminifera, sedimentological and geochemical studies of sediment cores and surface samples from the Sea of Okhotsk are used to reconstruct the paleoceanography during the past 350.000 years. The dating and correlation of the sediments are based on oxygen isotope stratigraphy, absolute ages, magnetic susceptibility as well as a detailled tephrachronology of the entire basin. The sedimentation rates are characterized by temporal and spatial variations. The maximum sedimentation rate takes place at the continental slope off Sakhalin due to the input of the Amur River, the sea ice drift and the high productivity. The sedimentation rate in the eastern part of the Sea of Okhotsk is generelly high because of the influence of the nutrient-rich Kamchatka Current. In the central and northern parts of the Sea of Okhotsk, areas with low productivity and reduced terrestrial supply, the sedimentation rate is the lowest. The analyses of the surface sediment samples make it possible to characterize the (sub)- recent sediment supply and transportation processes. The bulk sediment measurements, isotope data and the accumulation rate of ice-rafted debris (IRD) show a dominant sea ice cover and a region with a high productivity as well as a high Amur River input in the western part of the sea. The eastern part of the Sea of Okhotsk, however, is marked by the predominance of warm and nutrient-rich water masses coming from the Kamchatka Current which restricts the sea ice cover. This is reflected in low content of ice-rafted debris and high productivity proxies as well as in isotope data. The deposits of the Sea of Okhotsk are characterized by terrestrial, biogenic and volcanogenic sediment input which varies temporally and spatially. Here, the sedimentation pattern is dominated by the terrestrial input. Bulk sediment measurements and sample analyses of the > 63 micron particle input make it possible to distinguish glacial and interglacial fluctuations. The sedimentation processes during glacial times are determined by a high content of ice-rafted debris, whereas the primary production is higher during interglacial periods. During the last glacial/interglacial cycle the IRD-distribution pattern indicates a strong sea ice transport in the western part and in large areas of the open sea in the eastern part of the Sea of Okhotsk with a relatively constant ice-drift system. The IRD flux in sediments of the oxygen isotope Stage 6 reflects a new sedimentation pattern in the eastern part of the sea. This high IRD accumulation rate indicates ice advances beyond the shelf margin and an iceberg transport from NE-E direction into the Sea of Okhotsk. The several large, brief, negative anomalies in d13C values of Neogloboquadrina pachyderma (s) show releases of methane from basin sediments which correspond to periods of relative sea level falls. The high sedimentation rates on the Sakhalin slope allow insights into the climatic history in Holocene and indicate shorter-scale variations oscillation in Stage 3, which correlate with the global climatic changes. These variations are described as Dansgaard-Oeschger cycles in Greenland ice cores and as Heinrich-Events in several marine sediment cores from the N-Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of two sedimentary records from the central Sea of Okhotsk, we reconstruct the closely coupled glacial/interglacial changes in terrigenous flux, marine productivity, and sea ice coverage over the past 1.1 Myr. The correspondance of our sedimentary records to the China loess grain size record (China loess particle timescale, CHILOPARTS) suggests that environmental changes in both the Sea of Okhotsk area and in SE Asia were closely related via the Siberian atmospheric high-pressure cell. During full glacial times our records point to a strong Siberian High causing northerly wind directions, the extension of the sea ice cover, and a reduced Amur River discharge. Deglacial maxima of terrigenous flux were succeeded by or synchronous to high-productivity events. Marine productivity was strengthened during glacial terminations because of an effective nutrient utilization at times of enhanced water column stratification and high nutrient supply from fluvial runoff and sea ice thawing. During interglacials, SE monsoonal winds prevailed, analogous to today's summer situation of a pronounced Mongolian Heat Low and a strong Hawaiian High. Strong freshwater discharge induced by high precipitation rates in the Amur drainage area and a seasonally reduced and mobile sea ice cover favored marine productivity (although being considerably lower than during the terminations) and a lowered flux of ice-rafted detritus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s, a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region ~170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years.