974 resultados para Curvas algebraicas
Resumo:
Green bean is considered as one of most traditional Brazilian Northeast dishes. Green beans drying preliminary experiments show that combine processes, fixed-bed/spouted bed, resulted in dehydrated beans with uniform humidity and the recovery of the beans properties after their rehydration. From this assays was defined an initial humidity suited for the spouted bed process. A fixed-bed pre-drying process until a level of 40% humidity gave the best results. The spouted bed characteristic hydrodynamic curves were presented for different beans loads, where changes in the respective beans physical properties were evidenced during the fluidynamic assay, due simultaneous drying process. One 22 factorial experimental design was carried out with three repetition in the central point, considering as entry variables: drying air velocity and temperature. The response variables were the beans brakeage, water fraction evaporated during 20 and 50 minutes of drying and the humidity ratio. They are presented still the modeling of the drying of the green beans in fine layer in the drier of tray and the modeling of the shrinking of the beans of the drying processes fixed-bed and spouted bed
Resumo:
In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer s ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells
Resumo:
During natural gas processing, water removal is considered as a fundamental step in that combination of hydrocarbons and water favors the formation of hydrates. The gas produced in the Potiguar Basin (Brazil) presents high water content (approximately 15000 ppm) and its dehydration is achieved via absorption and adsorption operations. This process is carried out at the Gas Treatment Unit (GTU) in Guamaré (GMR), in the State of Rio Grande do Norte. However, it is a costly process, which does not provide satisfactory results when water contents as low as 0.5 ppm are required as the exit of the GTU. In view of this, microemulsions research is regarded as an alternative to natural gas dehydration activities. Microemulsions can be used as desiccant fluids because of their unique proprieties, namely solubilization enhancement, reduction in interfacial tensions and large interfacial area between continuous and dispersed phases. These are actually important parameters to ensure the efficiency of an absorption column. In this work, the formulation of the desiccant fluid was determined via phases diagram construction, employing there nonionic surfactants (RDG 60, UNTL L60 and AMD 60) and a nonpolar fluid provided by Petrobras GMR (Brazil) typically comprising low-molecular weight liquid hydrocarbons ( a solvent commonly know as aguarrás ). From the array of phases diagrams built, four representative formulations have been selected for providing better results: 30% RDG 60-70% aguarrás; 15% RDG 60-15% AMD 60-70% aguarrás, 30% UNTL L60-70% aguarrás, 15% UNTL L60-15% AMD 60-70% aguarrás. Since commercial natural gas is already processed, and therefore dehydrated, it was necessary to moister some sample prior to all assays. It was then allowed to cool down to 13ºC and interacted with wet 8-12 mesh 4A molecular sieve, thus enabling the generation of gas samples with water content (approximately 15000 ppm). The determination of the equilibrium curves was performed based on the dynamic method, which stagnated liquid phase and gas phase at a flow rate of 200 mL min-1. The hydrodynamic study was done with the aim of established the pressure drop and dynamic liquid hold-up. This investigation allowed are to set the working flow rates at 840 mL min-1 for the gas phase and 600 mLmin-1 for the liquid phase. The mass transfer study indicated that the system formed by UNTL L60- turpentine-natural gas the highest value of NUT
Resumo:
Polyurethanes are very versatile macromolecular materials that can be used in the form of powders, adhesives and elastomers. As a consequence, they constitute important subject for research as well as outstanding materials used in several manufacturing processes. In addition to the search for new polyurethanes, the kinetics control during its preparation is a very important topic, mainly if the polyurethane is obtained via bulk polymerization. The work in thesis was directed towards this subject, particularly the synthesis of polyurethanes based castor oil and isophorone diisocianate. As a first step castor oil characterized using the following analytical methods: iodine index, saponification index, refraction index, humidity content and infrared absorption spectroscopy (FTIR). As a second step, test specimens of these polyurethanes were obtained via bulk polymerization and were submitted to swelling experiments with different solvents. From these experiments, the Hildebrand parameter was determined for this material. Finally, bulk polymerization was carried out in a differential scanning calorimetry (DSC) equipment, using different heating rates, at two conditions: without catalyst and with dibutyltin dilaurate (DBTDL) as catalyst. The DSC curves were adjusted to a kinetic model, using the isoconversional method, indicating the autocatalytic effect characteristic of this class of polymerization reaction
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy
Resumo:
This work aims to study the drying of cashew-nut pulp with different lay-out of dryers using conventional and solar energy. It concerns with the use of exceeding of the regional raw material and the suitable knowledge for the applicability of the drying systems as pathway for food conservation. Besides, it used renewable sources as solar energy to dry these agroindustrial products. Runs were carried out using a conventional tray-dryer with temperature, air velocity control and cashew slice thickness of 55°C, 65°C, 75°C; 3.0; 4.5, 6.0 m s-1; 1.0; 1.5 and 2.0 cm, respectively, in order to compare the studied systems. To evaluate the conventional tray-dryer, it was used a diffusional model of 2nd Fick´s law, where the drying curves were quite well fitted to an infinite flat plate design. For the drying runs where the room temperature had no control, it was developed a phenomenological-mathematical model for the solar dryer with indirect radiation under natural and forced convection based on material and energy balances of the system. Besides, it was carried out assays in the in natura as well as dehydrated, statistic analysis of the experimental drying data, sensorial analysis of the final dry product and a simplified economical analysis of the systems studied
Resumo:
The WAT is the temperature at the beginning of the appearance of wax crystals. At this temperature the first wax crystals are formed by the cooling systems paraffin / solvents. Paraffins are composed of a mixture of saturated hydrocarbons of high molecular weight. The removal of petroleum from wells and the production lines means a surcharge on produced oil, thus solubilize these deposits formed due to modifications of thermodynamics has been a constant challenge for companies of oil exploration. This study combines the paraffin solubilization by microemulsion systems, the determination of WAT systems paraffin / solvent and performance of surfactant in reducing the crystallization. We used the methods: rheological and the photoelectric signal, validating the latter which was developed to optimize the data obtained due to sensitivity of the equipment used. Methods developed for description of wax precipitation are often in poor agreement with the experimental data, they tend to underestimate the amount of wax at temperatures below the turbidity point. The Won method and the Ideal solution method were applied to the WAT data obtained in solvent systems, best represented by the second interaction of Won method using the solvents naphtha, hexane and LCO. It was observed that the results obtained by WAT photoelectric signal when compared with the viscosity occur in advance, demonstrating the greatest sensitivity of the method developed. The ionic surfactant reduced the viscosity of the solvent systems as it acted modifying the crystalline structure and, consequently, the pour point. The curves show that the WAT experimental data is, in general, closer to the modeling performed by the method of Won than to the one performed by the ideal solution method, because this method underestimates the curve predicting the onset of paraffin hydrocarbons crystallization temperature. This occurs because the actual temperature measured was the crystallization temperature and the method proposes the fusion temperature measurement.
Resumo:
The wet oxidation of organic compounds with CO2 and H2O has been demonstrated to be an efficient technique for effluent treatment. This work focuses on the synthesis, characterization and catalytic performance of Fe-MnO2/CeO2, K-MnO2/CeO2/ palygorskite and Fe/ palygorskite toward the wet oxidative degradation of phenol. The experiments were conducted in a sludge bed reactor with controlled temperature, pressure and stirring speed and sampling of the liquid phase. Experiments were performed on the following operating conditions: temperature 130 ° C, pressure 20.4 atm, catalyst mass concentration of 5 g / L initial concentration of phenol and 0.5 g / L. The catalytic tests were performed in a slurry agitated reactor provided with temperature, pressure and agitation control and reactor liquid sampling. The influences of iron loaded on the support (0.3; 7 and 10%, m/m) and the initial pH of the reactant medium (3.1; 6.8; 8.7) were studied. The iron dispersion on the palygorskite, the phase purity and the elemental composition of the catalyst were evaluated by X-Ray Difraction (XRD), Scanning Electron Microscopy (SEM) and X-Ray Flourescence (XRF). The use of palygorskite as support to increase the surface area was confirmed by the B.E.T. surface results. The phenol degradation curves showed that the Fe3+ over palygorskite when compared with the other materials tested has the best performance toward the (Total Organic carbonic) TOC conversion. The decrease in alkalinity of the reaction medium also favors the conversion of TOC. The maximum conversion obtained from the TOC with the catalyst 3% Fe / palygorskite was around 95% for a reaction time of 60 minutes, while reducing the formation of acids, especially acetic acid. With products obtained from wet oxidation of phenol, hydroquinone, p-benzoquinone, catechol and oxalic acid, identified and quantified by High Performance Liquid Chromatography was possible to propose a reaction mechanism of the process where the phenol is transformed into the homogeneous and heterogeneous phase in the other by applying a kinetic model, Langmuir-Hinshelwood type, with evaluation of kinetic constants of different reactions involved.
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
The nonionic surfactants when in aqueous solution, have the property of separating into two phases, one called diluted phase, with low concentration of surfactant, and the other one rich in surfactants called coacervate. The application of this kind of surfactant in extraction processes from aqueous solutions has been increasing over time, which implies the need for knowledge of the thermodynamic properties of these surfactants. In this study were determined the cloud point of polyethoxylated surfactants from nonilphenolpolietoxylated family (9,5 , 10 , 11, 12 and 13), the family from octilphenolpolietoxylated (10 e 11) and polyethoxylated lauryl alcohol (6 , 7, 8 and 9) varying the degree of ethoxylation. The method used to determine the cloud point was the observation of the turbidity of the solution heating to a ramp of 0.1 ° C / minute and for the pressure studies was used a cell high-pressure maximum ( 300 bar). Through the experimental data of the studied surfactants were used to the Flory - Huggins models, UNIQUAC and NRTL to describe the curves of cloud point, and it was studied the influence of NaCl concentration and pressure of the systems in the cloud point. This last parameter is important for the processes of oil recovery in which surfactant in solution are used in high pressures. While the effect of NaCl allows obtaining cloud points for temperatures closer to the room temperature, it is possible to use in processes without temperature control. The numerical method used to adjust the parameters was the Levenberg - Marquardt. For the model Flory- Huggins parameter settings were determined as enthalpy of the mixing, mixing entropy and the number of aggregations. For the UNIQUAC and NRTL models were adjusted interaction parameters aij using a quadratic dependence with temperature. The parameters obtained had good adjust to the experimental data RSMD < 0.3 %. The results showed that both, ethoxylation degree and pressure increase the cloudy points, whereas the NaCl decrease
Resumo:
The present work has as objective the knowledge of the process of drying of the cephalothorax of shrimp to give support the industry to make possible the use of this byproduct. In this sense, the process conditions in this tray dryer and spouted bed were analyzed. With these results, it was projected and constructs a dryer with specific characteristics for the drying of the cephalothorax. The desorption isotherms were obtained by the dynamic method in the temperatures of 20, 35 and 50º C and in the interval of 10-90% of relative humidity. It was observed that the product in form of powder can be conserved with larger stability for lower relative humidity to 40%. The curves of drying of the dryer of fixed bed were adjusted for the models: single exponential, biparametric exponential and Page. The model biparametric exponential more adequately described all the drying conditions studied. The tests carry out in spouted bed showed high drying rate for the material in the paste form in beds active dynamicly-fluid, provely the necessity of a feeding in shorter intervals of time to increase the thermal efficiency of the process. The projected dryer, be considered the obtained results, it was a rotary dryer with inert bed, feed co-current, discharge in cyclone to take place the separation gas-solid, and feed carry out in intervals of 2 minutes. The optimization of the equipment projected it was accomplished used the complete factorial experimental design 24, this had as independent variables temperature velocity of the air, feed flow rate and encapsulated concentration (albumin), as variables answers the thermal efficiency, the moisture content of obtained powder, total time of test and the efficiency of production of powder in several points of processing. The results showed that the rotary dryer with inert bed can present, also, good results if applied industrially
Resumo:
In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer's ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination Humberto Neves Maia de Oliveira Tese de Doutorado PPGEQ/PRH-ANP 14/UFRN of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells
Resumo:
One of the most evident and actual concern, not only in the scientific means, but also of the public knowledge in general, is the lack problem of the potable water, that come increasing more each time, motivated mainly for the po llution of the sources, the bad use of the water and the increase of the population. In such a way, the necessity of looking for new water sources and the development of techniques to use sources minus explored is becoming even more important and urgent. T he rainwater comes being used since a long time like a supplying source, but, due the few knowledge of its characteristics, the generated preconception and the discrimination around its consumption and to the bad use of the technique of collection and stor age, it comes being little used, wasting consequently a significant parcel of this source. Trying to develop the knowing of some characteristics of the rainwater, the present work looks for to define the curve of variation of the quality of the rainwater i n three points with distinct characteristics of the city of Natal -RN, in the course of the precipitation, in some situations of time and space. For describe the curve of variation of the water s quality, some variables must be analyzed, and to be identifie d when they modify themselves in the endurance of rain, showing in which moment the purification of the water is more or less quickly. The pH, the Turbidity and the Electric Conductivity can be related with a big part of the physicist -chemistries variables found in the water and, like its analyses don't spend any material, they have easy access and measurement. The present work analyzes the curves of decline of these three variables, in three points with distinct characteristics in the city of Natal -RN, being these points: one next to the sea, another one in region with great buildings concentration and the last point in a less polluted area. For the studied region, it was during the five first millimeters of rain that occurs the biggest reduction of the exi sting impurities in the atmosphere, mainly between the first and the second millimeter, and after the five first millimeters the values of the variables stabilize. With exception of the University Campus, where initially the rainwater already has very good quality, the values of Turbidity and Electric Conductivity suffer a brusque reduction after the first millimeter of rain
Resumo:
The municipal district of Equador-RN is located in an area of great amounts of ores, being your main economical activity the extraction and the kaolin improvement. The main originating from environmental problem that activity is the amount of generated residue, about 70% of the extracted kaolin. The residues are simply piled up in lands of the improvement companies, occupying like this a large area and causing impact in the existent flora. When dry, the residues transform powdered and for the action of the wind, they disperse, polluting the air. Being like this, the present work has as objective evaluates the incorporation of the great residue, originating from of the kaolin improvement, in partial substitution of all the employed aggregates in a conventional mixture of asphalt concrete, which was used in the paving of BR101/RN061 - passage between Ponta Negra and Ares. That evaluation was accomplished in three stages. The first refers to the evaluation of the physical, thermal and mineralogical characteristics of the residue with the intention of to classify it and to define your application as aggregate (small and great). The second refers to the physical characterization of the aggregates and of the asphalt material used in the conventional mixture. And the third, to the evaluation of the mixtures containing residue, which were elaborated starting from the conventional mixture with the gradual incorporation of the residue, from 5 to 40%, in substitution to the part of the conventional aggregates, in way to obtain similar particle size curves the one of the conventional mixture. That evaluation was accomplished through the comparison between the volumetric composition, the mechanical behavior and the susceptibility to the humidity of the mixtures containing residue with the one of the conventional mixture, and with the one of the DNIT specifications. The results show that the great residue originating from of the kaolin improvement has grains of the most varied size, being like this, it can substitute part of all the conventional aggregates and of the filler in an asphalt mixture. Besides, your mineralogical composition presented the same present minerals in the composition of conventional aggregates used in paving. The results evaluation of the volumetric composition of the mixtures containing residue indicates that it can use up to 30% of residue in substitution to the conventional aggregates. The evaluation of the mechanical behavior of those mixtures indicates that the residue increment in the studied mixtures caused an increase of the stability and a reduction of the resistance to the traction. The values obtained in the resistance to the traction meet below the minimum value specified by DNIT, but close to the value obtained in the conventional mixture. When taking in consideration the susceptibility of the same ones to the humidity, the results indicate that she can use up to 25% of residue