807 resultados para Cornell Scale for Depression in Dementia
Resumo:
Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.
Resumo:
The relevance of chaotic advection to stratospheric mixing and transport is addressed in the context of (i) a numerical model of forced shallow-water flow on the sphere, and (ii) a middle-atmosphere general circulation model. It is argued that chaotic advection applies to both these models if there is suitable large-scale spatial structure in the velocity field and if the velocity field is temporally quasi-regular. This spatial structure is manifested in the form of “cat’s eyes” in the surf zone, such as are commonly seen in numerical simulations of Rossby wave critical layers; by analogy with the heteroclinic structure of a temporally aperiodic chaotic system the cat’s eyes may be thought of as an “organizing structure” for mixing and transport in the surf zone. When this organizing structure exists, Eulerian and Lagrangian autocorrelations of the velocity derivatives indicate that velocity derivatives decorrelate more rapidly along particle trajectories than at fixed spatial locations (i.e., the velocity field is temporally quasi-regular). This phenomenon is referred to as Lagrangian random strain.
Resumo:
We evaluate the effects of spatial resolution on the ability of a regional climate model to reproduce observed extreme precipitation for a region in the Southwestern United States. A total of 73 National Climate Data Center observational sites spread throughout Arizona and New Mexico are compared with regional climate simulations at the spatial resolutions of 50 km and 10 km for a 31 year period from 1980 to 2010. We analyze mean, 3-hourly and 24-hourly extreme precipitation events using WRF regional model simulations driven by NCEP-2 reanalysis. The mean climatological spatial structure of precipitation in the Southwest is well represented by the 10 km resolution but missing in the coarse (50 km resolution) simulation. However, the fine grid has a larger positive bias in mean summer precipitation than the coarse-resolution grid. The large overestimation in the simulation is in part due to scale-dependent deficiencies in the Kain-Fritsch convective parameterization scheme that generate excessive precipitation and induce a slow eastward propagation of the moist convective summer systems in the high-resolution simulation. Despite this overestimation in the mean, the 10 km simulation captures individual extreme summer precipitation events better than the 50 km simulation. In winter, however, the two simulations appear to perform equally in simulating extremes.
Resumo:
The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises.
Resumo:
As part of the rebuilding efforts following the long civil war, the Liberian government has renegotiated long-term contracts with international investors to exploit natural resources. Substantial areas of land have been handed out in large-scale concessions across Liberia during the last five years. While this may promote economic growth at the national level, such concessions are likely to have major environmental, social and economic impacts on local communities, who may not have been consulted on the proposed developments. This report examines the potential socio-economic and environmental impacts of a proposed large-scale oil palm concession in Bopolu District, Gbarpolu County in Liberia. The research provided an in-depth mapping of current resource use, livelihoods and ecosystems services, in addition to analysis of community consultation and perceptions of the potential impacts of the proposed development. This case study of a palm oil concession in Liberia highlights wider policy considerations regarding large-scale land acquisitions in the global South: • Formal mechanisms may be needed to ensure the process of Free, Prior, Informed Consent takes place effectively with affected communities and community land rights are safeguarded. • Rigorous Environmental and Social Impact Assessments need to be conducted before operations start. Accurate mapping of customary land rights, community resources and cultural sites, livelihoods, land use, biodiversity and ecosystems services is a critical tool in this process. • Greater clarity and awareness-raising of land tenure laws and policies is needed at all levels. Good governance and capacity-building of key institutions would help to ensure effective implementation of relevant laws and policies. • Efforts are needed to improve basic services and infrastructure in rural communities and invest in food crop cultivation in order to enhance food security and poverty alleviation. Increasing access to inputs, equipment, training and advice is especially important if male and female farmers are no longer able to practice shifting cultivation due to the reduction/ loss of customary land and the need to farm more intensively on smaller areas of land.
Resumo:
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in iterative parallel data mining algorithms. In particular, the analysis focuses on one of the most influential and popular data mining methods, the k-means algorithm for cluster analysis. The straightforward parallel formulation of the k-means algorithm requires a global reduction operation at each iteration step, which hinders its scalability. This work studies a different parallel formulation of the algorithm where the requirement of global communication can be relaxed while still providing the exact solution of the centralised k-means algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.
Resumo:
The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905) for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.
Resumo:
Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former’s climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission ‘hotspots’: areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently observed, including the flushing storm sources of Chryse and Utopia, and southern midlatitude areas from which larger storms tend to initiate, such as Hellas and Solis Planum. The seasonal cycle of emission, which includes a double-peaked structure in northern autumn and winter, also appears realistic. Significant increases to lifting rates are produced for any sensible choices of parameters controlling the sub-grid distributions used, but results are sensitive to the smallest scale of variability considered, which high-resolution modelling suggests should be O(1 km) or less. Use of such models in future will permit the use of a diagnosed (rather than prescribed) variable gustiness intensity, which should further enhance dust lifting in the southern hemisphere in particular.
Resumo:
The subgrid-scale spatial variability in cloud water content can be described by a parameter f called the fractional standard deviation. This is equal to the standard deviation of the cloud water content divided by the mean. This parameter is an input to schemes that calculate the impact of subgrid-scale cloud inhomogeneity on gridbox-mean radiative fluxes and microphysical process rates. A new regime-dependent parametrization of the spatial variability of cloud water content is derived from CloudSat observations of ice clouds. In addition to the dependencies on horizontal and vertical resolution and cloud fraction included in previous parametrizations, the new parametrization includes an explicit dependence on cloud type. The new parametrization is then implemented in the Global Atmosphere 6 (GA6) configuration of the Met Office Unified Model and used to model the effects of subgrid variability of both ice and liquid water content on radiative fluxes and autoconversion and accretion rates in three 20-year atmosphere-only climate simulations. These simulations show the impact of the new regime-dependent parametrization on diagnostic radiation calculations, interactive radiation calculations and both interactive radiation calculations and in a new warm microphysics scheme. The control simulation uses a globally constant f value of 0.75 to model the effect of cloud water content variability on radiative fluxes. The use of the new regime-dependent parametrization in the model results in a global mean which is higher than the control's fixed value and a global distribution of f which is closer to CloudSat observations. When the new regime-dependent parametrization is used in radiative transfer calculations only, the magnitudes of short-wave and long-wave top of atmosphere cloud radiative forcing are reduced, increasing the existing global mean biases in the control. When also applied in a new warm microphysics scheme, the short-wave global mean bias is reduced.
Resumo:
This study presents an evaluation of the size and strength of convective updraughts in high-resolution simulations by the UK Met Office Unified Model (UM). Updraught velocities have been estimated from range–height indicator (RHI) Doppler velocity measurements using the Chilbolton advanced meteorological radar, as part of the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. Based on mass continuity and the vertical integration of the observed radial convergence, vertical velocities tend to be underestimated for convective clouds due to the undetected cross-radial convergence. Velocity fields from the UM at a resolution corresponding to the radar observations are used to scale such estimates to mitigate the inherent biases. The analysis of more than 100 observed and simulated storms indicates that the horizontal scale of updraughts in simulations tend to decrease with grid length; the 200 m grid length agreed most closely with the observations. Typical updraught mass fluxes in the 500 m grid length simulations were up to an order of magnitude greater than observed, and greater still in the 1.5 km grid length simulations. The effect of increasing the mixing length in the sub-grid turbulence scheme depends on the grid length. For the 1.5 km simulations, updraughts were weakened though their horizontal scale remained largely unchanged. Progressively more so for the sub-kilometre grid lengths, updraughts were broadened and intensified; horizontal scale was now determined by the mixing length rather than the grid length. In general, simulated updraughts were found to weaken too quickly with height. The findings were supported by the analysis of the widths of reflectivity patterns in both the simulations and observations.