929 resultados para Conventional methodologies
Resumo:
The kinetic resolution of (±)-mandelonitrile was carried out using lipase from Candida antarctica under conventional condition (orbital shaker) and microwave irradiation in toluene, producing the (S)-mandelonitrile acetate with high selectivity (up to > 98% ee, enantiomeric excess). The unreacted (R)-mandelonitrile under microwave irradiation and conventional condition was partially converted into benzaldehyde by spontaneous chemical equilibrium. The (S)-mandelonitrile acetate under microwave irradiation was produced with 92% ee and 35% yield for 8 h of reaction. Conventional transesterification of (±)-mandelonitrile in an orbital shaker produced unreacted (R)-mandelonitrile (51% ee) and (S)-mandelonitrile acetate (98% ee) in accordance with Kazlauskas rule for 184 h of reaction.
Resumo:
This study analyzed the weight loss and surface roughness caused in Plexiglass specimens by conventional dentifrices (Sorriso, Colgate and Close Up) and specific dentifrices used for cleaning of dentures (Corega and Dentu Creme). Plexiglass specimens were divided into 6 groups (n=6) including: a control (distilled water - DW) and experimental groups. Brushing was performed in a toothbrushing machine with a soft brush and a dentifrice suspension and DW according to different brushing times (50, 100, 200 and 250 min -18,000, 36,000, 72,000 and 90,000 cycles, respectively, calculated to correspond to 1, 2, 4 and 5 years of regular brushing). The results of weight loss and surface roughness were analyzed by ANOVA and Tukey’s test at 5% significance level. In all tested times, the effect of DW was insignificant. Dentifrices differed significantly from DW in the initial period. Corega dentifrice caused greater mass loss in all studied times, followed by Close Up. Dentifrices resulted in a surface roughness similar to the DW at 50 min. In the other times, Sorriso, Colgate and Corega caused more surface roughness than DW. In conclusion, specific dentifrices caused larger mass loss and lower surface roughness as conventional dentifrice.
Resumo:
Visual correspondence is a key computer vision task that aims at identifying projections of the same 3D point into images taken either from different viewpoints or at different time instances. This task has been the subject of intense research activities in the last years in scenarios such as object recognition, motion detection, stereo vision, pattern matching, image registration. The approaches proposed in literature typically aim at improving the state of the art by increasing the reliability, the accuracy or the computational efficiency of visual correspondence algorithms. The research work carried out during the Ph.D. course and presented in this dissertation deals with three specific visual correspondence problems: fast pattern matching, stereo correspondence and robust image matching. The dissertation presents original contributions to the theory of visual correspondence, as well as applications dealing with 3D reconstruction and multi-view video surveillance.
Resumo:
The running innovation processes of the microwave transistor technologies, used in the implementation of microwave circuits, have to be supported by the study and development of proper design methodologies which, depending on the applications, will fully exploit the technology potentialities. After the choice of the technology to be used in the particular application, the circuit designer has few degrees of freedom when carrying out his design; in the most cases, due to the technological constrains, all the foundries develop and provide customized processes optimized for a specific performance such as power, low-noise, linearity, broadband etc. For these reasons circuit design is always a “compromise”, an investigation for the best solution to reach a trade off between the desired performances. This approach becomes crucial in the design of microwave systems to be used in satellite applications; the tight space constraints impose to reach the best performances under proper electrical and thermal de-rated conditions, respect to the maximum ratings provided by the used technology, in order to ensure adequate levels of reliability. In particular this work is about one of the most critical components in the front-end of a satellite antenna, the High Power Amplifier (HPA). The HPA is the main power dissipation source and so the element which mostly engrave on space, weight and cost of telecommunication apparatus; it is clear from the above reasons that design strategies addressing optimization of power density, efficiency and reliability are of major concern. Many transactions and publications demonstrate different methods for the design of power amplifiers, highlighting the availability to obtain very good levels of output power, efficiency and gain. Starting from existing knowledge, the target of the research activities summarized in this dissertation was to develop a design methodology capable optimize power amplifier performances complying all the constraints imposed by the space applications, tacking into account the thermal behaviour in the same manner of the power and the efficiency. After a reminder of the existing theories about the power amplifier design, in the first section of this work, the effectiveness of the methodology based on the accurate control of the dynamic Load Line and her shaping will be described, explaining all steps in the design of two different kinds of high power amplifiers. Considering the trade-off between the main performances and reliability issues as the target of the design activity, we will demonstrate that the expected results could be obtained working on the characteristics of the Load Line at the intrinsic terminals of the selected active device. The methodology proposed in this first part is based on the assumption that designer has the availability of an accurate electrical model of the device; the variety of publications about this argument demonstrates that it is so difficult to carry out a CAD model capable to taking into account all the non-ideal phenomena which occur when the amplifier operates at such high frequency and power levels. For that, especially for the emerging technology of Gallium Nitride (GaN), in the second section a new approach for power amplifier design will be described, basing on the experimental characterization of the intrinsic Load Line by means of a low frequency high power measurements bench. Thanks to the possibility to develop my Ph.D. in an academic spin-off, MEC – Microwave Electronics for Communications, the results of this activity has been applied to important research programs requested by space agencies, with the aim support the technological transfer from universities to industrial world and to promote a science-based entrepreneurship. For these reasons the proposed design methodology will be explained basing on many experimental results.
Resumo:
Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.
Resumo:
Monitoring foetal health is a very important task in clinical practice to appropriately plan pregnancy management and delivery. In the third trimester of pregnancy, ultrasound cardiotocography is the most employed diagnostic technique: foetal heart rate and uterine contractions signals are simultaneously recorded and analysed in order to ascertain foetal health. Because ultrasound cardiotocography interpretation still lacks of complete reliability, new parameters and methods of interpretation, or alternative methodologies, are necessary to further support physicians’ decisions. To this aim, in this thesis, foetal phonocardiography and electrocardiography are considered as different techniques. Further, variability of foetal heart rate is thoroughly studied. Frequency components and their modifications can be analysed by applying a time-frequency approach, for a distinct understanding of the spectral components and their change over time related to foetal reactions to internal and external stimuli (such as uterine contractions). Such modifications of the power spectrum can be a sign of autonomic nervous system reactions and therefore represent additional, objective information about foetal reactivity and health. However, some limits of ultrasonic cardiotocography still remain, such as in long-term foetal surveillance, which is often recommendable mainly in risky pregnancies. In these cases, the fully non-invasive acoustic recording, foetal phonocardiography, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the so recorded foetal heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. A new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings is presented in this thesis. Different filtering and enhancement techniques, to enhance the first foetal heart sounds, were applied, so that different signal processing techniques were implemented, evaluated and compared, by identifying the strategy characterized on average by the best results. In particular, phonocardiographic signals were recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by the developed algorithm and the other provided by cardiotocographic device). The algorithm performances were tested on phonocardiographic signals recorded on pregnant women, showing reliable foetal heart rate signals, very close to the ultrasound cardiotocographic recordings, considered as reference. The algorithm was also tested by using a foetal phonocardiographic recording simulator developed and presented in this research thesis. The target was to provide a software for simulating recordings relative to different foetal conditions and recordings situations and to use it as a test tool for comparing and assessing different foetal heart rate extraction algorithms. Since there are few studies about foetal heart sounds time characteristics and frequency content and the available literature is poor and not rigorous in this area, a data collection pilot study was also conducted with the purpose of specifically characterising both foetal and maternal heart sounds. Finally, in this thesis, the use of foetal phonocardiographic and electrocardiographic methodology and their combination, are presented in order to detect foetal heart rate and other functioning anomalies. The developed methodologies, suitable for longer-term assessment, were able to detect heart beat events correctly, such as first and second heart sounds and QRS waves. The detection of such events provides reliable measures of foetal heart rate, potentially information about measurement of the systolic time intervals and foetus circulatory impedance.
Resumo:
Con questa dissertazione di tesi miro ad illustrare i risultati della mia ricerca nel campo del Semantic Publishing, consistenti nello sviluppo di un insieme di metodologie, strumenti e prototipi, uniti allo studio di un caso d‟uso concreto, finalizzati all‟applicazione ed alla focalizzazione di Lenti Semantiche (Semantic Lenses).
Resumo:
MFA and LCA methodologies were applied to analyse the anthropogenic aluminium cycle in Italy with focus on historical evolution of stocks and flows of the metal, embodied GHG emissions, and potentials from recycling to provide key features to Italy for prioritizing industrial policy toward low-carbon technologies and materials. Historical trend series were collected from 1947 to 2009 and balanced with data from production, manufacturing and waste management of aluminium-containing products, using a ‘top-down’ approach to quantify the contemporary in-use stock of the metal, and helping to identify ‘applications where aluminium is not yet being recycled to its full potential and to identify present and future recycling flows’. The MFA results were used as a basis for the LCA aimed at evaluating the carbon footprint evolution, from primary and electrical energy, the smelting process and the transportation, embodied in the Italian aluminium. A discussion about how the main factors, according to the Kaya Identity equation, they did influence the Italian GHG emissions pattern over time, and which are the levers to mitigate it, it has been also reported. The contemporary anthropogenic reservoirs of aluminium was estimated at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), and it would imply a potential of about 160 Mt of CO2eq emissions savings. A discussion of criticality related to aluminium waste recovery from the transportation and the containers and packaging sectors was also included in the study, providing an example for how MFA and LCA may support decision-making at sectorial or regional level. The research constitutes the first attempt of an integrated approach between MFA and LCA applied to the aluminium cycle in Italy.
Resumo:
Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.
Resumo:
This thesis reports an integrated analytical approach for the study of physicochemical and biological properties of new synthetic bile acid (BA) analogues agonists of FXR and TGR5 receptors. Structure-activity data were compared with those previous obtained using the same experimental protocols on synthetic and natural occurring BA. The new synthetic BA analogues are classified in different groups according also to their potency as a FXR and TGR5 agonists: unconjugated and steroid modified BA and side chain modified BA including taurine or glycine conjugates and pseudo-conjugates (sulphonate and sulphate analogues). In order to investigate the relationship between structure and activity the synthetic analogues where admitted to a physicochemical characterization and to a preliminary screening for their pharmacokinetic and metabolism using a bile fistula rat model. Sensitive and accurate analytical methods have been developed for the quali-quantitative analysis of BA in biological fluids and sample used for physicochemical studies. Combined High Performance Liquid Chromatography Electrospray tandem mass spectrometry with efficient chromatographic separation of all studied BA and their metabolites have been optimized and validated. Analytical strategies for the identification of the BA and their minor metabolites have been developed. Taurine and glycine conjugates were identified in MS/MS by monitoring the specific ion transitions in multiple reaction monitoring (MRM) mode while all other metabolites (sulphate, glucuronic acid, dehydroxylated, decarboxylated or oxo) were monitored in a selected-ion reaction (SIR) mode with a negative ESI interface by the following ions. Accurate and precise data where achieved regarding the main physicochemical properties including solubility, detergency, lipophilicity and albumin binding . These studies have shown that minor structural modification greatly affect the pharmacokinetics and metabolism of the new analogues in respect to the natural BA and on turn their site of action, particularly where their receptor are located in the enterohepatic circulation.
Resumo:
This study was aimed to correlate the results of relative germination from in vitro tests by trifloxystrobin with those of qPCR on a wide range of V. inaequalis populations and monoconidial isolates. Samples were collected in Italian and Turkish distinct locations from orchards with different scab management. In this study, an allele-specific qPCR with primer sets designed was successfully developed to quantitatively determine the frequency of QoI-resistant allele G143A in populations and monoconidial isolates of V. inaequalis. qPCR followed a similar pattern to that obtained using in vitro conidial germination test in very sensitive and very resistant populations. However, the variability between two test results was observed in hetereogenous populations. Therefore, the results of correlations between in vitro and qPCR showed a positive but not very high correlation for Venturia inaequalis populations (R2=0.70). On the contrary, this correlation between two assessment methods was very high for monoconidial isolates (R2=0.92). Results obtained in quantitative PCR and from traditional spore germination assay differed for the same fungal population and in some cases, it is difficult to assess the resistance in the field by only qPCR. It was concluded that it is not always possible to correlate the frequency of detection of the mutation with biological assessment. In such situations, monitoring by molecular techniques must be supported by standard in vitro resistance assessments and observation of field performance in order to have correct conclusions.
A farm-level programming model to compare the atmospheric impact of conventional and organic farming
Resumo:
A model is developed to represent the activity of a farm using the method of linear programming. Two are the main components of the model, the balance of soil fertility and the livestock nutrition. According to the first, the farm is supposed to have a total requirement of nitrogen, which is to be accomplished either through internal sources (manure) or through external sources (fertilisers). The second component describes the animal husbandry as having a nutritional requirement which must be satisfied through the internal production of arable crops or the acquisition of feed from the market. The farmer is supposed to maximise total net income from the agricultural and the zoo-technical activities by choosing one rotation among those available for climate and acclivity. The perspective of the analysis is one of a short period: the structure of the farm is supposed to be fixed without possibility to change the allocation of permanent crops and the amount of animal husbandry. The model is integrated with an environmental module that describes the role of the farm within the carbon-nitrogen cycle. On the one hand the farm allows storing carbon through the photosynthesis of the plants and the accumulation of carbon in the soil; on the other some activities of the farm emit greenhouse gases into the atmosphere. The model is tested for some representative farms of the Emilia-Romagna region, showing to be capable to give different results for conventional and organic farming and providing first results concerning the different atmospheric impact. Relevant data about the representative farms and the feasible rotations are extracted from the FADN database, with an integration of the coefficients from the literature.