905 resultados para Conductive Nitrile Rubber
Resumo:
De acuerdo con los objetivos generales del proyecto y plan de trabajo previsto, para esta anualidad, se obtuvieron fibras y microfibras de celulosa a partir de dos fuentes: celulosa vegetal de pino y eucalipto y celulosa bacterial. Las microfibrillas han sido utilizadas como material de refuerzo para la fabricación de materiales compuestos a partir de caucho natural, policaprolactona y polivinil alcohol. Las muestras se fabricaron mediante la técnica de "casting" en medio acuoso y temperatura ambiente. Las muestras fueron caracterizados en sus propiedades mecánicas, físicas y térmicas. Se observó que, en general, la adición de las microfibrillas de celulosa en las matrices poliméricas provoca una mejora sustancial en las propiedades mecánicas del material en comparación con el polímero sin reforzar. Los resultados pueden resumirse de la siguiente manera: 1.Fabricación de materiales compuestos a base de caucho natural y fibras de celulosa. Se obtuvieron fibras y nanofibras de celulosa que fueron modificadas químicamente y usadas como refuerzo en matriz de caucho. Los resultados mostraron mejora de propiedades mecánicas del material, principalmente en los materiales compuestos reforzados con nanofibras. 2. Obtención de whiskers de celulosa y su utilización como material de refuerzo en una matriz de policaprolactona. Se obtuvieron whiskers de celulosa a partir de pasta blanqueada. La adición en una matriz de policaprolactona produjo materiales compuestos con propiedades mecánicas superiores a la matriz, con buena dispersión de los whiskers. 3. Obtención de fibras de celulosa bacterial y nanofibras de celulosa, aislamiento y utilización sobre una matriz de polivinil alcohol. Se obtuvo celulosa bacterial a partir de la bacteria Gluconacetobacter xylinum. Además se fabricaron nanofibras de celulosa a partir eucalipto blanqueado. La celulosa bacterial como material de refuerzo no produjo importantes mejoras en las propiedades mecánicas de la matriz; en cambio se observaron mejoras destacables con la nanofibra como refuerzo.
Resumo:
Plants naturally synthesize a variety of polymers that have been used by mankind as a source of useful biomaterials. For example, cellulose, the main constituent of plant cell wall and the most abundant polymer on earth, has been used for several thousand years as a source of fibers for various fabrics. Similarly, rubber extracted from the bark of the tree Hevea brasiliensis, has been a major source of elastomers until the development of similar synthetic polymers. In the last century, the usefulness of plant polymers as biomaterials has been expanded through the chemical modification of the natural polymers. For example, a number of plastics have been made by substituting the hydroxyl groups present on the glucose moiety of cellulose with larger groups, such as nitrate or acetate, giving rise to materials such as cellulose acetate, a clear plastic used in consumer products such as toothbrush handles and combs. Similarly, starch has been used in the manufacture of plastics by either using it in blends with synthetic polymers or as the main constituent in biodegradable plastics. The advent of transformation and expres- sion of foreign genes in plants has created the possibility of expanding the usefulness of plants to include the synthesis of a range of biomolecules. In view of the capacity of certain crops to produce a large quantity of organic raw material at low cost, such as oils and starch, it is of interest to explore the possibility of using transgenic plants as efficient vectors for the synthesis of biopolymers. Such plant based biopolymers could replace, in part, the synthetic plastics and elastomers produced from petroleum, offering the advantage of renewability and sustainability. Furthermore, being natural pro- ducts, biopolymers are usually biodegradable and can thus contribute to alleviate problems associated with the management of plastic waste. In this article, the emphasis will be on the use of transgenic plants for the synthesis of two novel classes of industrially useful polymers, namely protein based polymers made from natural or artificial genes, and polyhydroxyalkanoates, a family of bacterial poly- esters having the properties of biodegradable plastics and elastomers.
Resumo:
Estudi realitzat a partir d’una estada a la University of British Columbia, Canada, entre 2010 i 2012. Primerament es va desenvolupar una escala per mesurar coixeses (amb valors de l’1 al 5). Aquesta escala es va utilitzar per estudiar l’associació entre factors de risc a nivell de granja (disseny de le instal.lacions i maneig) i la prevalencia de coixeses a Nord America. Les dades es van recollir en un total de 40 granges al Nord Est dels E.E.U.U (NE) i 39 a California (CA) . Totes les vaques del group mes productiu es van categoritzar segons la severitat de les coixeses: sanes, coixes i severament coixes. La prevalencia de coixeses en general fou del 55 % a NE i del 31% a CA. La prevalencia de coixeses severes fou del 8% a NE i del 4% a Ca. A NE, les coixeses en general increntaren amb la presencia de serradura als llits i disminuiren en granjes grans, amb major quantitat de llit i acces a pastura. Les coixeses mes severes incrementaren amb la falta d’higiene als llit i amb la presencia de serradura als llits, i disminuiren amb la quantitat de llit proveit, l’us de sorra als llits i amb la mida de la granja. A CA, les coixeses en general incrementaren amb la falta d’higiene al llit, i disminuiren amb la mida de la granja, la presencia de terres de goma, l’increment d’espai als cubicles , l’espai a l’abeuredor i la desinfeccio de les peulles. Les coixeses severes incrementaren amb la falta d’higiene al llit i disminuixen amb la frequencia de neteja del corral. En conclusio, canvis en el maneig i el disseny de les instal.lacions poden ajudar a disminuir la prevalencia de coixeses, tot i que les estrategies a seguir variaran segons la regio.
Resumo:
Plants produce a range of biopolymers for purposes such as maintenance of structural integrity, carbon storage, and defense against pathogens and desiccation. Several of these natural polymers are used by humans as food and materials, and increasingly as an energy carrier. In this review, we focus on plant biopolymers that are used as materials in bulk applications, such as plastics and elastomers, in the context of depleting resources and climate change, and consider technical and scientific bottlenecks in the production of novel or improved materials in transgenic or alternative crop plants. The biopolymers discussed are natural rubber and several polymers that are not naturally produced in plants, such as polyhydroxyalkanoates, fibrous proteins and poly-amino acids. In addition, monomers or precursors for the chemical synthesis of biopolymers, such as 4-hydroxybenzoate, itaconic acid, fructose and sorbitol, are discussed briefly
Resumo:
Calacarus heveae Feres, 1992 is an Eriophyidae mite described from rubber tree (Hevea brasiliensis Muell. Arg.) in the northwest region of the State of São Paulo. This mite prefers the adaxial face of the folioles and it can reduce the brightness of the leaves, turning them progressively yellow and brownish, and consequently premature fall. The aim of this work was to study the biology of C. heveae in laboratory, on detached rubber tree folioles. The study was conducted at 28±1 ºC in the photophase (12h), 25±1 ºC in the dark phase (12h), and 90±5% relative humidity. The study was initiated with a total of 59 eggs. The average duration of egg, larva and nymph stages was 5.8, 2.0 and 1.4 days, respectively. The period from egg to adult lasted 9.3 days, and the average periods of pre-oviposition, oviposition and post-oviposition, 1.8, 6.1 and 1.2 days, respectively. The average longevity of the adult male was ca. 4.0 days, while the longevity adult female was about 8.4 days. The average daily oviposition rate was 2.3 egg per female while the average fecundity was 16.2 eggs per female.
Resumo:
Objectives The objective of this article is to describe the development of an anatomically accurate simulator in order to aid the training of a perinatal team in the insertion and removal of a fetal endoscopic tracheal occlusion (FETO) balloon in the management of prenatally diagnosed congenital diaphragmatic hernia. Methods An experienced perinatal team collaborated with a medical sculptor to design a fetal model for the FETO procedure. Measurements derived from 28-week fetal magnetic resonance imaging were used in the development of an anatomically precise simulated airway within a silicone rubber preterm fetal model. Clinician feedback was then used to guide multiple iterations of the model with serial improvements in the anatomic accuracy of the simulator airway. Results An appropriately sized preterm fetal mannequin with a high-fidelity airway was developed. The team used this model to develop surgical skills with balloon insertion, and removal, and to prepare the team for an integrated response to unanticipated delivery with the FETO balloon still in situ. Conclusions This fetal mannequin aided in the ability of a fetal therapy unit to offer the FETO procedure at their center for the first time. This model may be of benefit to other perinatal centers planning to offer this procedure.
Resumo:
Bronchiolitis obliterans (BO) following allogeneic haematopoietic stem cell transplantation (HSCT) affects peripheral airways. Detection of BO is presently delayed by the low sensitivity of spirometry. We examined the relationship between peripheral airway function and time since HSCT, and compared it with spirometry and clinical indices in 33 clinically stable allogeneic HSCT recipients. The following measurements were performed: lung function, exhaled nitric oxide, forced oscillatory respiratory system resistance and reactance, acinar (S(acin)) and conductive airways ventilation heterogeneity and lung clearance index (LCI) measured by multiple breath nitrogen washout. 22 patients underwent repeat visits from which short-term changes were examined. Median time post HSCT was 12 months. Eight patients were clinically diagnosed as having BO. In multivariate analysis, time since HSCT was predicted by S(acin) and forced expiratory volume in 1 s % predicted. 20 patients had abnormal S(acin) with normal spirometry, whereas none had airflow obstruction with normal S(acin). S(acin) and LCI were the only measures to change significantly between two visits, with both worsening. Change in S(acin) was the only parameter to correlate with change in chronic graft-versus-host disease grade. In conclusion, peripheral airways ventilation heterogeneity worsens with time after HSCT. S(acin) may be more sensitive than spirometry in detecting BO at an early stage, which needs confirmation in a prospective study.
Resumo:
RESUM L'automatització s'utilitza des de fa molts anys, tot i que va començar a agafar la definició que coneixem actualment al voltant dels anys seixanta i setanta, moment en què es comencen a comercialitzar els primers PLC. A partir d'aquí, el seu creixement ha estat exponencial. En aquest sentit, la tecnologia ha anat avançant i ha augmentat els components que la forma, per això a hores d'ara encara no sabem fins on podrà arribar i què aconseguirà. Per a la indústria tot això ha significat l'automatització de processos que fins ara utilitzaven molt mà d'obra, reduint-la dràsticament. Una de les indústries que més s'ha beneficiat de tots aquests avenços ha estat la de l'automoció, concretament les seves grans línies de producció, automatitzades a uns nivells que fins fa poc temps eren impensables. Aquest projecte forma part d'aquesta indústria, no directament per a la construcció de l'automòbil, sinó indirectament, ja que l'empresa per a la qual s'ha fet l'automatització fabrica peces plàstiques per a automòbils. Concretament, unes peces amb uns injerts metàl•lics conductors que es munten a tots els vehicles i s'utilitzen per accionar els neteja vidres dels cotxes. Aquest fet implica que la fabricació i el disseny de la peça sigui curosament vigilat i controlat per al client final, amb uns controls de qualitat extremadament exigents. El funcionament del procés de fabricació es fa a partir d'unes peces de plàstic produïdes per una injectora que es fan passar per unes estacions automatitzades, cada una de les quals fa una acció concreta per aconseguir el muntatge final.
Resumo:
Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.
Resumo:
In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.
Resumo:
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements.
Resumo:
Soil penetration resistance (PR) and the tensile strength of aggregates (TS) are commonly used to characterize the physical and structural conditions of agricultural soils. This study aimed to assess the functionality of a dynamometry apparatus by linear speed and position control automation of its mobile base to measure PR and TS. The proposed equipment was used for PR measurement in undisturbed samples of a clayey "Nitossolo Vermelho eutroférrico" (Kandiudalfic Eutrudox) under rubber trees sampled in two positions (within and between rows). These samples were also used to measure the volumetric soil water content and bulk density, and determine the soil resistance to penetration curve (SRPC). The TS was measured in a sandy loam "Latossolo Vermelho distrófico" (LVd) - Typic Haplustox - and in a very clayey "Nitossolo Vermelho distroférrico" (NVdf) - Typic Paleudalf - under different uses: LVd under "annual crops" and "native forest", NVdf under "annual crops" and "eucalyptus plantation" (> 30 years old). To measure TS, different strain rates were applied using two dynamometry testing devices: a reference machine (0.03 mm s-1), which has been widely used in other studies, and the proposed equipment (1.55 mm s-1). The determination coefficient values of the SRPC were high (R² > 0.9), regardless of the sampling position. Mean TS values in LVd and NVdf obtained with the proposed equipment did not differ (p > 0.05) from those of the reference testing apparatus, regardless of land use and soil type. Results indicate that PR and TS can be measured faster and accurately by the proposed procedure.
Resumo:
Convective flows of a small Prandtl number fluid contained in a two-dimensional cavity subject to a lateral thermal gradient are numerically studied by using different techniques. The aspect ratio (length to height) is kept at around 2. This value is found optimal to make the flow most unstable while keeping the basic single-roll structure. Two cases of thermal boundary conditions on the horizontal plates are considered: perfectly conducting and adiabatic. For increasing Rayleigh numbers we find a transition from steady flow to periodic oscillations through a supercritical Hopf bifurcation that maintains the centrosymmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation the system initiates a complex scenario of bifurcations. In the conductive case these include a quasiperiodic route to chaos. In the adiabatic one the dynamics is dominated by the interaction of two Neimark-Sacker bifurcations of the basic periodic solutions, leading to the stable coexistence of three incommensurate frequencies, and finally to chaos. In all cases, the complex time-dependent behavior does not break the basic, single-roll structure.
Resumo:
Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67 % as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film.