976 resultados para Computers in Earth Sciences
Resumo:
Despite important progress on Amazonian floodplain research, the flooded forest of the Negro River igapó has been little investigated. In particular, no study has previously focused the linkage between fluvial geomorphology and the floristic variation across the course of the river. In this paper we describe and interpret relations between igapó forest, fluvial geomorphology and the spatial evolution of the igapó forest through the Holocene. Therefore, we investigate the effect of geomorphological units of the floodplain and channel patterns on tree diversity, composition and structural parameters of the late-successional igapó forest. Our results show that sites sharing almost identical flooding regime, exhibit variable tree assemblages, species richness and structural parameters such as basal area, tree density and tree heights, indicating a trend in which the geomorphologic styles seem to partially control the organization of igapó's tree communities. This can be also explained by the high variability of well-developed geomorphologic units in short distances and concentrated in small areas. In this dynamic the inputs from the species pool of tributary rivers play a crucial role, but also the depositional and erosional processes associated with the evolution of the floodplain during the Holocene may control floristic and structural components of the igapó forests. These results suggest that a comprehensive approach integrating floristic and geomorphologic methods is needed to understand the distribution of the complex vegetation patterns in complex floodplains such as the igapó of the Negro River. This combination of approaches may introduce a better comprehension of the temporal and spatial evolutionary analysis and a logic rationale to understand the vegetation distribution and variability in function of major landforms, soil distributions and hydrology. Thus, by integrating the past into macroecological analyses will sharpen our understanding of the underlying forces for contemporary floristic patterns along the inundation forests of the Negro River. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.
Resumo:
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs.
Resumo:
In cooperation with the Lower Platte South Natural Resources District for a collaborative study of the cumulative effects of water and channel management practices on stream and riparian ecology, the U.S. Geological Survey (USGS) compiled, analyzed, and summarized hydrologic information from long-term gaging stations on the lower Platte River to determine any significant temporal differences among six discrete periods during 1895-2006 and to interpret any significant changes in relation to changes in climatic conditions or other factors. A subset of 171 examined hydrologic indices (HIs) were selected for use as indices that (1) included most of the variance in the larger set of indices, (2) retained utility as indicators of the streamflow regime, and (3) provided information at spatial and temporal scale(s) that were most indicative of streamflow regime(s). The study included the most downstream station within the central Platte River segment that flowed to the confluence with the Loup River and all four active streamflow-gaging stations (2006) on the lower Platte River main stem extending from the confluence of the Loup River and Platte River to the confluence of the Platte River and Missouri River south of Omaha. The drainage areas of the five streamflow-gaging stations covered four (of eight) climate divisions in Nebraska—division 2 (north central), 3 (northeast), 5 (central), and 6 (east central).
Resumo:
Anchitherine horses are a subfamily of equids that are abundantly represented in the late Eocene and early Oligocene of North America. This group has been heavily studied in the past, but important questions still remain. Some studies have focused on the Eocene-Oligocene boundary and have used these equids along with other taxa to study mammalian diet and climate change through this interval. I reexamine two anchitherine genera, Mesohippus and Miohippus, from stratigraphic sequences of the White River Group in western Nebraska and southwestern South Dakota. These sequences span the Chadronian (late Eocene), Orellan (early Oligocene), and Whitneyan (early Oligocene) North American land-mammal ages. The most recent revision of these genera was done by Prothero and Shubin (1989). I review the characters used for taxonomic identification. This includes characters such as the hypostyle, the articular facet on the third metatarsal, and dental dimensions. To avoid possible biases caused by combining specimens from different stratigraphic levels, specimens were separated by location and stratigraphic level. The length and width of cheek teeth, and tooth rows were measured on 488 specimens. First molar area serves as a proxy for body mass in horses and other mammals, and can be useful for distinguishing among species. Results indicate that the characters used by Prothero and Shubin were highly variable in anchitherine horses and are not useful for distinguishing between these genera. The development of the articular facet on the third metatarsal may be a function of body size and therefore may be of no more utility than first molar area. Variability in first molar area suggests the presence of three species in the medial and late Chadronian, two species in the Orellan, and at least two species in the Whitneyan. Due to a lack of objective criteria separating Mesohippus from Miohippus, I recommend synonymy of these genera, making Mesohippus a junior subjective synonym.
Resumo:
Abstract Water temperature and dissolved oxygen (DO) profiles were measured once every month from mid July to mid February in a relatively deep sand-pit lake in southeast Nebraska. These profiles showed depleted DO concentrations below the thermocline during summer stratification indicating areas fish will likely avoid in summer months. Colder temperatures in fall caused complete mixing of the water column allowing fish to inhabit all depths of the lake. An inverse temperature stratification occurred directly below the ice during winter months as ice cover cooled the surface water to below 4 degrees Celsius. Ice cover also blocked air – water oxygen transfer and reduced light for photosynthesizing algae. Associated with winter ice cover, DO concentrations in the hypolimnion decreased significantly, once again reducing available fish habitat. It is likely anglers will have a higher success rate catching fishing in water above 6 meters (m) (~20 feet) in a eutrophic sandpit lake during hot summer months and below ice cover in winter. Fish can utilize all depths of the lake during fall turnover and could theoretically be caught by anglers anywhere in the lake.