840 resultados para Colorectal cancer - Chemoradiotherapy
Resumo:
On August 2931, 2004, 84 academic and industry scientists from 16 countries gathered in Copper Mountain, Colorado USA to discuss certain issues at the forefront of the science of probiotics and prebiotics. The format for this invitation only meeting included six featured lectures: engineering human vaginal lactobacilli to express HIV inhibitory molecules (Peter Lee, Stanford University), programming the gut for health (Thaddeus Stappenbeck, Washington University School of Medicine), immune modulation by intestinal helminthes (Joel Weinstock, University of Iowa Hospitals and Clinics), hygiene as a cause of autoimmune disorders (G. A. Rook, University College London), prebiotics and bone health (Connie Weaver, Purdue University) and prebiotics and colorectal cancer risk (Ian Rowland, Northern Ireland Centre for Food and Health). In addition, all participants were included in one of eight discussion groups on the topics of engineered probiotics, host-commensal bacteria communication, 'omics' technologies, hygiene and immune regulation, biomarkers for healthy people, prebiotic and probiotic applications to companion animals, development of a probiotic dossier, and physiological relevance of prebiotic activity. Brief conclusions from these discussion groups are summarized in this paper.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
Background: Dietary fibres have been associated with decreased risk of various cancers, although the mechanisms are unclear. Induction of apoptosis in tumour cells is thought to be an important protective mechanism against colorectal cancer. This work investigates the effects of pectins and pecticoligosaccharides (POS) on the human colonic adenocarcinoma cell line HT29. Materials and Methods: The anti-proliferative effects of pectin and POS were studied by testing the HT29 cells for cytotoxicity, differentiation and/or apoptosis by lactate dehydrogenase, alkaline phosphatase and caspase-3 activity assays. DNA agarose gel electrophoresis was also carried out. Results: A significant reduction in attached cell numbers was observed after three days incubation. This decrease was neither due to cells undergoing necrosis nor differentiation. Increased apoptosis frequency, after incubation with 1% (w/v) pectin andlor POS, was demonstrated by caspase-3 activity and DNA laddering on agarose gel electrophoresis. Conclusion: Dietary pectins and their degradation products may contribute to the reported protective effects of fruits against colon cancer.
Resumo:
Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.
Resumo:
We investigated the anti-proliferative effects of an olive oil polyphenolic extract on human colon adenocarcinoma cells. Analysis indicated that the extract contained hydroxytyrosol, tyrosol and the various secoiridoid derivatives, including oleuropein. This extract exerted a strong inhibitory effect on cancer cell proliferation, which was linked to the induction of a G2/M phase cell cycle block. Following treatment with the extract (50 mu g/ml) the number of cells in the G2/M phase increased to 51.82 +/- 2.69% relative to control cells (15.1 +/- 2.5%). This G2/M block was mediated by the ability of olive oil polyphenols (50 mu g/ml) to exert rapid inhibition of p38 (38.7 +/- 4.7%) and CREB (28.6 +/- 5.5%) phosphorylation which led to a downstream reduction in COX-2 expression (56.9 +/- 9.3%). Our data suggest that olive oil polyphenols may exert chemo preventative effects in the large intestine by interacting with signalling pathways responsible for colorectal cancer development. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Objective: In recent years the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In the present study we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Methods: Cytotoxicity studies were performed using MTT, NR and TEER assays whereas 3H-thymidine incorporation and western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Results: Rhein (0.1-10μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as MAP kinase activation; by contrast, at the high concentration (10μg/ml) rhein significantly increased cell proliferation and ERK phosphorylation. Moreover, rhein (0.1-10μg/ml) (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function, (ii) did not induce DNA damage rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and ROS levels induced by H2O2/Fe2+. Conclusions: Rhein, was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism which seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.
Resumo:
Foods derived from animals are an important source of nutrients in the diet but there is considerable uncertainty about whether or not these foods contribute to increased risk of various chronic diseases. For milk in particular there appears to be an enormous mismatch between both the advice given on milk/dairy foods items by various authorities and public perceptions of harm from the consumption of milk and dairy products, and the evidence from long-term prospective cohort studies. Such studies provide convincing evidence that increased consumption of milk can lead to reductions in the risk of vascular disease and possibly some cancers and of an overall survival advantage from the consumption of milk, although the relative effect of milk products is unclear. Accordingly, simply reducing milk consumption in order to reduce saturated fatty acid (SFA) intake is not likely to produce benefits overall though the production of dairy products with reduced SFA contents is likely to be helpful. For red meat there is no evidence of increased risk of vascular diseases though processed meat appears to increase the risk substantially. There is still conflicting and inconsistent evidence on the relationship between consumption of red meat and the development of colorectal cancer, but this topic should not be ignored. Likewise, the role of poultry meat and its products as sources of dietary fat and fatty acids is not fully clear. There is concern about the likely increase in the prevalence of dementia but there are few data on the possible benefits or risks from milk and meat consumption. The future role of animal nutrition in creating foods closer to the optimum composition for long-term human health will be increasingly important. Overall, the case for increased milk consumption seems convincing, although the case for high-fat dairy products and red meat is not. Processed meat products do seem to have negative effects on long-term health and although more research is required, these effects do need to be put into the context of other risk factors to long-term health such as obesity, smoking and alcohol consumption.
Resumo:
Fermented dairy products and their component bacteria have been shown to possess health-promoting functions in consumers and recently have been suggested to reduce the risk of colorectal cancer. Kefir and ayran are two popular fermented milk drinks that have their origins in the Caucasus region of Russia. The present study aimed to evaluate their potential anticancer properties in colon cells in vitro. The comet assay and transepithelial resistance assay were used to assess the effect of kefir and ayran supernatants on genotoxicity of fecal water samples and on intestinal tight junction integrity. Their antioxidant capacity was measured by trolox equivalent antioxidant capacity assay and compared with that of unfermented milk. The results showed that DNA damage induced by 2 of 4 fecal water samples was significantly decreased by kefir and ayran supernatants and with ayran the effect was dose-dependent. However no effect on intestinal tight junctions was observed. The supernatants of kefir and ayran contained high amounts of acetic and lactic acid but only a very small quantity of caproic and butyric acid, and they showed significantly greater antioxidant capacity than milk. These findings suggest kefir and ayran can reduce DNA damage, which might be due to their antioxidant capacities.
Resumo:
Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.
Resumo:
Haem in red meat (RM) stimulates the endogenous production of mutagenic nitroso compounds (NOC). Processed (nitrite-preserved red) meat additionally contains high concentrations of preformed NOC. In two studies, of a fresh RM versus a vegetarian (VEG) diet (six males and six females) and of a nitrite-preserved red meat (PM) versus a VEG diet (5 males and 11 females), we investigated whether processing of meat might increase colorectal cancer risk by stimulating nitrosation and DNA damage. Meat diets contained 420 g (males) or 366 g (females) meat/per day. Faecal homogenates from day 10 onwards were analysed for haem and NOC and asso- ciated supernatants for genotoxicity. Means are adjusted for differ- ences in male to female ratios between studies. Faecal NOC concentrations on VEG diets were low (2.6 and 3.5 mmol/g) but significantly higher on meat diets (PM 175 ± 19 nmol/g versus RM 185 ± 22 nmol/g; P 5 0.75). The RM diet resulted in a larger pro- portion of nitrosyl iron (RM 78% versus PM 54%; P < 0.0001) and less nitrosothiols (RM 12% versus PM 19%; P < 0.01) and other NOC (RM 10% versus PM 27%; P < 0.0001). There was no statis- tically significant difference in DNA breaks induced by faecal water (FW) following PM and RM diets (P 5 0.80). However, PM re- sulted in higher levels of oxidized pyrimidines (P < 0.05). Surpris- ingly, VEG diets resulted in significantly more FW-induced DNA strand breaks than the meat diets (P < 0.05), which needs to be clarified in further studies. Meats cured with nitrite have the same effect as fresh RM on endogenous nitrosation but show increased FW-induced oxidative DNA damage.
Resumo:
Background DNA methylation of promoter-associated CpG islands of certain genes may play a role in the development of colorectal cancer. The MYOD-1 gene which is a muscle differentiation gene has been showed to be significantly methylated in colorectal cancer which, is an age related event. However the role of this gene in the colonic mucosa is not understood and whether methylation occurs in subjects without colon cancer. In this study, we have determined the frequency of methylation of the MYOD-1 gene in normal colonic mucosa and investigated to see if this is associated with established colorectal cancer risk factors primarily ageing. Results We analysed colonic mucosal biopsies in 218 normal individuals and demonstrated that in most individuals promoter hypermethylation was not quantified for MYOD-1. However, promoter hypermethylation increased significantly with age (p < 0.001 using regression analysis) and this was gender independent. We also showed that gene promoter methylation increased positively with an increase in waist to hip (WHR) ratio - the latter is also a known risk factor for colon cancer development. Conclusions Our study suggests that promoter gene hypermethylation of the MYOD-1 gene increases significantly with age in normal individuals and thus may offer potential as a putative biomarker for colorectal cancer.
Resumo:
Evidence from in vivo and in vitro studies suggests that the consumption of pro- and prebiotics may inhibit colon carcinogenesis; however, the mechanisms involved have, thus far, proved elusive. There are some indications from animal studies that the effects are being exerted during the promotion stage of carcinogenesis. One feature of the promotion stage of colorectal cancer is the disruption of tight junctions, leading to a loss of integrity across the intestinal barrier. We have used the Caco-2 human adenocarcinoma cell line as a model for the intestinal epithelia. Trans-epithelial electrical resistance measurements indicate Caco-2 monolayer integrity, and we recorded changes to this integrity following exposure to the fermentation products of selected probiotics and prebiotics, in the form of nondigestible oligosaccharides (NDOs). Our results indicate that NDOs themselves exert varying, but generally minor, effects upon the strength of the tight junctions, whereas the fermentation products of probiotics and NDOs tend to raise tight junction integrity above that of the controls. This effect was bacterial species and oligosaccharide specific. Bifidobacterium Bb 12 was particularly effective, as were the fermentation products of Raftiline and Raftilose. We further investigated the ability of Raftilose fermentations to protect against the negative effects of deoxycholic acid (DCA) upon tight junction integrity. We found protection to be species dependent and dependent upon the presence of the fermentation products in the media at the same time as or after exposure to the DCA. Results suggest that the Raftilose fermentation products may prevent disruption of the intestinal epithelial barrier function during damage by tumor promoters.
Resumo:
Vegetable consumption is associated with a reduced risk of colorectal cancer, which is the second most common cancer after lung/breast cancer within Europe. Some putative protective phytochemicals are found in higher amounts in young sprouts than in mature plants. The effect of an extract of mixed cruciferous and legume sprouts on DNA damage induced by H(2)O(2) was measured in HT29 cells using single cell microgelelectrophoresis (comet). Significant antigenotoxic effect (P < or = 0.05) was observed when HT29 cells were pre-incubated with the extract (100 and 200 microL/mL) for 24 hours and then challenged with H(2)O(2). A parallel design intervention study was carried out on 10 male and 10 female healthy adult volunteers (mean age = 25.5 years) fed 113 g of cruciferous and legume sprouts daily for 14 days. The effect of the supplementation was measured on a range of parameters, including DNA damage in lymphocytes (comet), the activity of various detoxifying enzymes (glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), antioxidant status using the ferric reducing ability of plasma assay, plasma antioxidants (uric acid, ascorbic acid, and alpha-tocopherol), blood lipids, plasma levels of lutein, and lycopene. A significant antigenotoxic effect against H(2)O(2)-induced DNA damage was shown in peripheral blood lymphocytes of volunteers who consumed the supplemented diet when compared with the control diet (P = 0.04). No significant induction of detoxifying enzymes was observed during the study, neither were plasma antioxidant levels or activity altered. The results support the theory that consumption of cruciferous vegetables is linked to a reduced risk of cancer via decreased damage to DNA.
Resumo:
Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.