837 resultados para Coal power plant


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue crack growth tests have been carried out in a number of gaseous environments in order to assess their effects on the crack propagation resistance of BS 4360 grade 50EE, a weldable structural steel. Crack growth rates at 25 °C are up to 20 times higher in hydrogen than in air, but there is no effect when hydrogen is present as a 30% constituent of a simplified product gas (SPG). Indeed, crack growth rates in such a mixture are slightly lower than those measured in air, being comparable with those observed in an inert environment. The other gases present in the SPG are CO, CO2 and CH4, and it is probable that the carbon monoxide is responsible for nullifying the embrittling effects of hydrogen, by preferentially adsorbing on to the surface of the steel and thus blocking hydrogen entry. Experimental observations suggest that oxygen has the same effect when small quantities are allowed to diffuse into a non-flowing hydrogen environment around a propagating crack. The results are encouraging in terms of the suitability of conventional structural steels such as BS 4360 for gas plant applications. The gas mixtures present in such an environment would not have the severe detrimental effects on fatigue crack growth resistance which result from the presence of 'pure' hydrogen. © 1993.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to assess the performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implications for generation policy in Korea as outlined in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal ignited the industrial revolution. An organic sedimentary rock that energized the globe, transforming cities, landscapes and societies for generations, the importance of ‘King Coal’ to the development and consolidation of modernity has been well-recognised. And yet, as a critical factor in the production of modern architecture, coal—as well as other forms of energy—has been mostly overlooked.

From Appalachia to Lanarkshire, from the pits of northern France, Belgium and the Ruhr valley, to the monumental opencast excavations of Russia, China, Africa and Australia, mining operations have altered the immediate social and physical landscapes of coal-rich areas. But in contrast to its own underground conditions of production, the winning of coal, especially in the twentieth-century, has produced conspicuously enlightened and humane approaches to architecture and urbanism. In the twentieth century, educational buildings, holiday camps, hospitals, swimming pools, convalescent homes and housing prevailed alongside model collieries in mining settlements and areas connected to them. In 1930s Britain, pit head baths—funded by a levy on each ton produced—were often built in the International Style. Many won praise for architectural merit, appearing in Nicholas Pevsner’s guides to the buildings of England alongside cathedrals, village manors and Masonic halls as testimonies to the public good.

The deep relationships between coal and modernity, and the expressions of architecture it has articulated, in the collieries from which it was hewn, the landscape and towns it shaped, and the power stations and other infrastructure where it was used, offer innumerable opportunities to explore how coal produced architectures which embodied and expressed both social and technological conditions. While proposals on coal are preferred, we also welcome papers that interrogate the complexity, heterogeneity and hybridity of other forms of energy production and how these have also interceded into architectural form at a range of scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese submetida à Universidade de Lisboa, Instituto Superior Técnico e aprovada em provas públicas para a obtenção do Grau de Doutor em Sistemas Sustentáveis de Energia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to characterize the extracts prepared from Pimpinella anisum L. (anise) and Coriandrum sativum L. (coriander) (Apiaceae plants) seeds in terms of phenolic composition, and to correlate the obtained profiles with the antioxidant activity. Anise gave the highest abundance in phenolic compounds (42.09± 0.11 mg/g extract), mainly flavonoids (28.08±0.17 mg/g extract) and phenolic acids (14.01±0.06 mg/g extract), and also the highest antioxidant potential, measured by the ability to inhibit lipid peroxidation and β-carotene bleaching, the reducing power and the free radical scavenging activity. Apigenin and luteolin derivatives, as also caffeoylquinic acid derivatives seem to be directly related with the higher in vitro antioxidant potential of the anise extract. In contrast, the lower antioxidant potential of coriander seems to be due to its lower abundance in phenolic compounds (2.24±0.01 mg/g extract). Further studies are necessary to evaluate the in vivo antioxidant potential of the tested extracts, but the in vitro experiments already performed highlight them as potential health promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a system to control the power injected by a photovoltaic (PV) plant on the receiving network. This control is intended to mitigate some of the negative impacts that these units may produce on such networks, while increasing the installed power of the plant. The controlled parameters are the maximum allowed value of injected active power and the corresponding power factor, whose setpoints values may be fixed or dynamic. The developed system allows a local and a remote control. The injected power and the corresponding power factor may be set by following a predetermined profile or by real time adjustments to fulfill specific operation constraints on the receiving network. The system acts by adjusting the control parameters on the PV inverters. The main goal of the system is, in the end, to control the PV plant, ensuring the accomplishment of technical constraints and, at the same time, maximizing the installed power of the PV plant, which may be an important issue concerning the economic performance of such plants

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.