901 resultados para Clustering search algorithm
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
Epidemiologic studies have reported an inverse association between dairy product consumption and cardiometabolic risk factors in adults, but this relation is relatively unexplored in adolescents. We hypothesized that a higher dairy product intake is associated with lower cardiometabolic risk factor clustering in adolescents. To test this hypothesis, a cross-sectional study was conducted with 494 adolescents aged 15 to 18 years from the Azorean Archipelago, Portugal. We measured fasting glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, body fat, and cardiorespiratory fitness. We also calculated homeostatic model assessment and total cholesterol/high-density lipoprotein cholesterol ratio. For each one of these variables, a z score was computed using age and sex. A cardiometabolic risk score (CMRS) was constructed by summing up the z scores of all individual risk factors. High risk was considered to exist when an individual had at least 1 SD from this score. Diet was evaluated using a food frequency questionnaire, and the intake of total dairy (included milk, yogurt, and cheese), milk, yogurt, and cheese was categorized as low (equal to or below the median of the total sample) or “appropriate” (above the median of the total sample).The association between dairy product intake and CMRS was evaluated using separate logistic regression, and the results were adjusted for confounders. Adolescents with high milk intake had lower CMRS, compared with those with low intake (10.6% vs 18.1%, P = .018). Adolescents with appropriate milk intake were less likely to have high CMRS than those with low milk intake (odds ratio, 0.531; 95% confidence interval, 0.302-0.931). No association was found between CMRS and total dairy, yogurt, and cheese intake. Only milk intake seems to be inversely related to CMRS in adolescents.
Resumo:
Apresenta-se nesta tese uma revisão da literatura sobre a modelação de semicondutores de potência baseada na física e posterior análise de desempenho de dois métodos estocásticos, Particle Swarm Optimizaton (PSO) e Simulated Annealing (SA), quando utilizado para identificação eficiente de parâmetros de modelos de dispositivos semicondutores de potência, baseado na física. O conhecimento dos valores destes parâmetros, para cada dispositivo, é fundamental para uma simulação precisa do comportamento dinâmico do semicondutor. Os parâmetros são extraídos passo-a-passo durante simulação transiente e desempenham um papel relevante. Uma outra abordagem interessante nesta tese relaciona-se com o facto de que nos últimos anos, os métodos de modelação para dispositivos de potência têm emergido, com alta precisão e baixo tempo de execução baseado na Equação de Difusão Ambipolar (EDA) para díodos de potência e implementação no MATLAB numa estratégia de optimização formal. A equação da EDA é resolvida numericamente sob várias condições de injeções e o modelo é desenvolvido e implementado como um subcircuito no simulador IsSpice. Larguras de camada de depleção, área total do dispositivo, nível de dopagem, entre outras, são alguns dos parâmetros extraídos do modelo. Extração de parâmetros é uma parte importante de desenvolvimento de modelo. O objectivo de extração de parâmetros e otimização é determinar tais valores de parâmetros de modelo de dispositivo que minimiza as diferenças entre um conjunto de características medidas e resultados obtidos pela simulação de modelo de dispositivo. Este processo de minimização é frequentemente chamado de ajuste de características de modelos para dados de medição. O algoritmo implementado, PSO é uma técnica de heurística de otimização promissora, eficiente e recentemente proposta por Kennedy e Eberhart, baseado no comportamento social. As técnicas propostas são encontradas para serem robustas e capazes de alcançar uma solução que é caracterizada para ser precisa e global. Comparada com algoritmo SA já realizada, o desempenho da técnica proposta tem sido testado utilizando dados experimentais para extrair parâmetros de dispositivos reais das características I-V medidas. Para validar o modelo, comparação entre resultados de modelo desenvolvido com um outro modelo já desenvolvido são apresentados.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial Para obtenção do grau de Mestre em Engenharia Informática
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
Multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the benefits gained from multiple interfaces come at an expense—that being higher energy consumption in an era where mobile devices need to be energy compliant. One promising solution is the usage of short-range cooperative communication as an overlay for infrastructure-based networks taking advantage of its context information. However, the node discovery mechanism, which is pivotal to the bearer establishment process, still represents a major burden in terms of the total energy budget. In this paper, we propose a technology agnostic approach towards enhancing the MAC energy ratings by presenting a context-aware node discovery (CANDi) algorithm, which provides a priori knowledge towards the node discovery mechanism by allowing it to search nodes in the near vicinity at the ‘right time and at the right place’. We describe the different beacons required for establishing the cooperation, as well as the context information required, including battery level, modes, location and so on. CANDi uses the long-range network (WiMAX and WiFi) to distribute the context information about cooperative clusters (Ultra-wideband-based) in the vicinity. The searching nodes can use this context in locating the cooperative clusters/nodes, which facilitates the establishing of short-range connections. Analytical and simulation results are obtained, and the energy saving gains are further demonstrated in the laboratory using a customised testbed. CANDi saves up to 50% energy during the node discovery process, while the demonstrative testbed shows up to 75% savings in the total energy budget, thus validating the algorithm, as well as providing viable evidence to support the usage of short-range cooperative communications for energy savings.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
OCEANS 2003. Proceedings (Volume:1 )
Resumo:
This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions.
Resumo:
The aim of the present study was to investigate the detection percentage of tuberculosis among patients that are respiratory symptomatic (TB suspects). In this work, we present the preliminary results of research carried out at "Hospital das Clínicas de Teresópolis Costantino Ottaviano da Fundação Educacional Serra dos Órgãos (FESO)" from November 2003 to April 2004. Among the 40 respiratory symptomatic individuals identified and referred to the Tuberculosis Control Program in Teresópolis, two (5.0%) were characterized as smear-positive. These results confirm reports in the literature and underscore the need for and importance of this strategy.
Resumo:
This paper describes the development and testing of a robotic capsule for search and rescue operations at sea. This capsule is able to operate autonomously or remotely controlled, is transported and deployed by a larger USV into a determined disaster area and is used to carry a life raft and inflate it close to survivors in large-scale maritime disasters. The ultimate goal of this development is to endow search and rescue teams with tools that extend their operational capability in scenarios with adverse atmospheric or maritime conditions.