961 resultados para Closed-vessel conductively heated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To establish an alternative method, sequential and diameter response analysis (SDRA), to determine dynamic retinal vessel responses and their time course in serial stimulation compared with the established method of averaged diameter responses and standard static assessment. METHODS. SDRA focuses on individual time and diameter responses, taking into account the fluctuation in baseline diameter, providing improved insight into reaction patterns when compared with established methods as delivered by retinal vessel analyzer (RVA) software. SDRA patterns were developed with measurements from 78 healthy nonsmokers and subsequently validated in a group of 21 otherwise healthy smokers. Fundus photography and retinal vessel responses were assessed by RVA, intraocular pressure by contact tonometry, and blood pressure by sphygmomanometry. RESULTS. Compared with the RVA software method, SDRA demonstrated a marked difference in retinal vessel responses to flickering light (P 0.05). As a validation of that finding, SDRA showed a strong relation between baseline retinal vessel diameter and subsequent dilatory response in both healthy subjects and smokers (P 0.001). The RVA software was unable to detect this difference or to find a difference in retinal vessel arteriovenous ratio between smokers and nonsmokers (P 0.243). However, SDRA revealed that smokers’ vessels showed both an increased level of arterial baseline diameter fluctuation before flicker stimulation (P 0.005) and an increased stiffness of retinal arterioles (P 0.035) compared with those in nonsmokers. These differences were unrelated to intraocular pressure or systemic blood pressure. CONCLUSIONS. SDRA shows promise as a tool for the assessment of vessel physiology. Further studies are needed to explore its application in patients with vascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a ferromagnetic steel billet was heated by induction a large increase in the amplitude of longitudinal vibration frequently occurred as a result of resonance. This happened when a natural frequency of the bar coincided with twice the heating frequency or multiples thereof. The temperature at which resonance occurred depended on a number of factors including billet length and heating power. Resonance was most often observed when the surface temperature of the billet reached the Curie point. It is well established that magnetostrictive vibrations occur in a ferromagnetic material subjected to an alternating electromagnetic field, but existing data suggests that linear magnetostriction decreases towards the Curie point. Linear magnetostriction was measured in a sample of mild steel up to 800ºC using a high temperature strain gauge. The magnetostriction constant 100 was calculated assuming an average grain orientation in mild steel. The data was found to be comparable to that published for single crystals of iron. It was discovered that linear magnetostriction was responsible for resonance below 600ºC but not for temperatures near the Curie point. Other possible causes of resonance such as forces produced by the interaction between eddy currents and the alternating electromagnetic field, the alpha to gamma phase transformation and the existence of a thin ferromagnetic layer were investigated. None were found to account for resonance in bars of mild steel heated by induction. Experimental work relating to the induction heating of steel is compared to previous work on the subject of electromagnetic generation of ultrasound where a similar increase of the amplitude of longitudinal waves in steel is reported at the Curie point. It is concluded that the two phenomena are related as they show strong similarities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural retinal vascular characteristics, such as vessel calibers, tortuosity and bifurcation angles are increasingly quantified in an objective manner, slowly replacing subjective qualitative disease classification schemes. This paper provides an overview of the current methodologies and calculations used to compute retinal vessel tortuosity. We set out the different parameter calculations and provide an insight into the clinical applications, while critically reviewing its pitfalls and shortcomings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pregnancy is characterized by an inflammatory-like process and this may be exacerbated in preeclampsia. The heme oxygenase (HO) enzymes generate carbon monoxide (CO) that induces blood vessel relaxation and biliverdin that acts as an endogenous antioxidant. Materials and Methods: We examined the expression and localization of HO-1 and HO-2 in normal and preeclamptic placenta using reverse transcription polymerase chain reaction (RT-PCR), RNase protection assay, immunoblotting and immunohistochemistry. In addition, the effect of HO activation on tumor necrosis factor-alpha (TNF) induced placental damage and on feto-placental circulation was studied. Results: We provide the first evidence for the role of HO as an endogenous placental factor involved with cytoprotection and placental blood vessel relaxation. HO-1 was significantly higher at term, compared with first trimester placentae indicating its role in placental vascular development and regulation. HO-1 predominantly localized in the extravascular connective tissue that forms the perivascular contractile sheath around the developing blood vessels. HO-2 was localized in the capillaries, as well as the villous stroma, with weak staining of trophoblast. Induction of HO-1 caused a significant attenuation of TNF-mediated cellular damage in placental villous explants, as assessed by lactate dehydrogenase leakage (p 0.01). HO-1 protein was significantly reduced in placentae from pregnancies complicated with preeclampsia, compared with gestationally matched normal pregnancies. This suggests that the impairment of HO-1 activation may compromise the compensatory mechanism and predispose the placenta to cellular injury and subsequent maternal endothelial cell activation. Isometric contractility studies showed that hemin reduced vascular tension by 61% in U46619-preconstricted placental arteries. Hemininduced vessel relaxation and CO production was inhibited by HO inhibitor, tin protoporphyrin IX. Conclusions: Our findings establish HO-1 as an endogenous system that offers protection against cytotoxic damage in the placenta, identifies the HO-CO pathway to regulate feto-placental circulation and provides a new approach to study the disease of preeclampsia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element simulations have been performed along side normal mode analysis on the linear stability that examined the development of volumetrically heated flow patterns in a horizontal layer controlled by the Prandtl number, Pr, and the Grashof number, Gr. The fluid was bounded by an isothermal plane above an adiabatic plane. In the simulations performed here, a number of convective polygonal planforms occurred, as Gr increased above the critical Grashof number, Grc at Pr = 7, while roll structures were observed for Pr < 1 at 2Grc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations examining pattern competition have been performed on a horizontal homogeneously heated layer that is bounded by an isothermal plane above an adiabatic plane. Several different circulation patterns arose as the heating regime applied to the horizontal layer was modified. The sequence of the patterns formed as the Grashof number was increased had the following order: laminar layer, rolls, squares, hexagons and pentagons, and then two square modes of differing orientations. Fourier analysis was used to determine how the key modes interact with each pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element simulations have been performed along side Galerkin-type calculations that examined the development of volumetrically heated flow patterns in a horizontal layer controlled by the Prandtl number, Pr, and the Grashof number, Gr. The fluid was bounded by an isothermal plane above an adiabatic plane. In the simulations performed here, a number of convective polygonal planforms occurred, as Gr increased above the critical Grashof number, Grc at Pr = 7, while roll structures were observed for Pr < 1 at 2Grc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Retinal Vessel Analyser (RVA) is a commercially available ophthalmoscopic instrument capable of acquiring vessel diameter fluctuations in real time and in high temporal resolution. Visual stimulation by means of flickering light is a unique exploration tool of neurovascular coupling in the human retina. Vessel reactivity as mediated by local vascular endothelial vasodilators and vasoconstrictors can be assessed non-invasively, in vivo. In brief, the work in this thesis • deals with interobserver and intraobserver reproducibility of the flicker responses in healthy volunteers • explains the superiority of individually analysed reactivity parameters over vendorgenerated output • links in static retinal measures with dynamic ones • highlights practical limitations in the use of the RVA that may undermine its clinical usefulness • provides recommendations for standardising measurements in terms of vessel location and vessel segment length and • presents three case reports of essential hypertensives in a -year follow-up. Strict standardisation of measurement procedures is a necessity when utilising the RVA system. Agreement between research groups on implemented protocols needs to be met, before it could be considered a clinically useful tool in detecting or predicting microvascular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel blood oxygen saturation measurements using poly-bead solutions of varying concentrations. Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intraocular pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography (Oximetry Module, Imedos Systems, Germany). To simulate light scatter, cells comprising a plastic collar and two plano lenses were filled with solutions of differing concentrations (0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA). The adopted light scatter model showed an artifactual increase in venous optical density ratio (p=0.036), with the 0.004% condition producing significantly higher venous optical density ratio values when compared to images without a cell in place. Spectrophotometric analysis, and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.